Skip to main content
Log in

Thermal, structural, magnetic and photoluminescence studies on cobalt ferrite nanoparticles obtained by citrate precursor method

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Magnetic nanoparticles of cobalt ferrite have been synthesized by citrate precursor method. TG-DSC studies have been made to get the idea of the optimum temperature of annealing that could lead to the formation of nanoparticles. Annealing the citrate precursor was done at 450, 650, and 973 °C. The X-ray diffraction (XRD) studies and the scanning electron microscopy (SEM) have been used for characterization. The data from vibrating sample magnetometer and photoluminescence spectrometer (PL) have been analyzed for exploring their applications. Using the Scherrer formula, the crystallite size was found to be 25, 32, and 43 nm, respectively, using the three temperatures. The particle size increased with annealing temperature. Rietveld refinements on the X-ray (XRD) data were done on the cobalt ferrite nanoparticles (monoclinic cells) obtained on annealing at 650 °C, selecting the space group P2/M. The values of coercivity (1574.4 G) and retentivity (18.705 emu g−1) were found out in the sample annealed at 650 °C while magnetization (39.032 emu g−1) was also found in the sample annealed at 973 °C. The photoluminescence (PL) property of these samples were studied using 225, 330, and 350 nm excitation wavelength radiation source. The PL intensity was found to be increasing with the particle size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zi Z, Sun Y, Zhu X, Yang Z, Dai J, Song W. Synthesis and magnetic properties of CoFe2O4 ferrite nanoparticles. J Magn Magn Mater. 2009;321:1251–5.

    Article  CAS  Google Scholar 

  2. Grigorova M, Blythe HJ, Blaskov V, Rusanov V, Petkov V, Masheva V, Nihtianova D, Martinez LM, Munoz JS, Mikhov M. Magnetic properties and Mössbauer spectra of nanosized CoFe2O4 powders. J Magn Magn Mater. 1998;183:163–72.

    Article  CAS  Google Scholar 

  3. Shenker H. Magnetic anisotropy of cobalt ferrite (Co1.01Fe2.00O3.62) and nickel cobalt ferrite (Ni0.72Fe0.20Co0.08Fe2O4). Phys Rev. 1957;107:1246–9.

    Article  CAS  Google Scholar 

  4. West AR. Basic solid state chemistry. Delhi: Wiley; 1998. p. 356.

  5. Salunkhe AB, Khot VM, Phadatare MR, Pawar SH. Combustion synthesis of cobalt ferrite nanoparticles—influence of fuel to oxidizer ratio. J Alloy Compd. 2012;514:91–6.

    Article  CAS  Google Scholar 

  6. Maaz K, Mumtaz A, Hasnain SK, Ceylan A. Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route. J Magn Magn Mater. 2007;308:289–95.

    Article  CAS  Google Scholar 

  7. Naidek KP, Bianconi F, Rizuti da Rocha TC, Zanchet D, Bonacin JA, Novak MA, Vaz MGF, Winnischofer H. Structure and morphology of spinel MFe2O4 (M = Fe, Co., Ni) nanoparticles chemically synthesized from heterometallic complexes. J Colloid Interface Sci. 2011;358:39–46.

    Article  CAS  Google Scholar 

  8. Cedeno-Mattei Y, Perales-Perez O. Synthesis of high-coercivity cobalt ferrite nanocrystals. Microelectron J. 2009;40:673–6.

    Article  CAS  Google Scholar 

  9. Fannin PC, Marin CN, Malaescu I, Stefu N, Vlazan P, Novaconi S, Sfirloaga P, Popescu S, Couper C. Microwave absorbent properties of nanosized cobalt ferrite powders prepared by coprecipitation and subjected to different temperature treatments. Mater Des. 2011;32:1600–4.

    Article  CAS  Google Scholar 

  10. Zhang Y, Yang Z, Yin D, Liu Y, Fei C, Xiong R, Shi J, Yan G. Composition and magnetic properties of cobalt ferrite nano-particles prepared by the co-precipitation method. J Magn Magn Mater. 2010;322:3470–5.

    Article  CAS  Google Scholar 

  11. Sajjia M, Oubaha M, Prescott T, Olabi AG. Development of cobalt ferrite powder preparation employing the sol–gel technique and its structural characterization. J Alloy Compd. 2010;506:400–6.

    Article  CAS  Google Scholar 

  12. Verma RK, Hill JO, Niinisto L, Mojumdar SC, Kumar DD. A curriculum framework for education in thermal analysis. J Mater Educ. 2012;34:133–50.

    Google Scholar 

  13. Verma RK, Verma L, Chandra M. Thermoanalytical studies on the non-isothermal dehydration and decomposition of dl-lactates of a series of transition metals. Indian J Chem. 2003;42A:2982–7.

    CAS  Google Scholar 

  14. Bhattacharjee NC, Kumar M, Kumar S, Verma RK. Kinetic and mechanistic studies on non-isothermal decomposition of potassium dioxalatocuprate(II) dihydrate. J Indian Chem Soc. 1998;75(5):317–8.

    CAS  Google Scholar 

  15. Verma RK, Verma L, Chandra M, Bhushan A. Non-isothermal dehydration and decomposition of dl-lactates of transition metals and alkaline earth metals: a comparative study. J Therm Anal Calorim. 2005;80:351–4.

    Article  CAS  Google Scholar 

  16. Kumar M, Verma RK, Verma L, Bhattacharjee NC, Kumar S, Verma BP. Thermal decomposition of potassium trioxalato chromate(III) trihydrate: a kinetic and mechanistic study. Asian J Chem. 1996;8(3):543–6.

    CAS  Google Scholar 

  17. Agrawal HL, Mishra A, Ambasta RK, Verma L, Verma RK, Verma BP. Kinetic parameters of thermolysis of complexes of rhodium(III), palladium(II) and platinum(II) with substituted morpholines from their non-isothermal thermogravimetric data. Asian J Chem. 1994;6:130–4.

    CAS  Google Scholar 

  18. Verma BP, Verma RK, Chandra M, Pandey S, Mallick AK, Verma L. A study of non-isothermal decomposition of calcium dl-lactate pentahydrate. Asian J Chem. 1994;6:606–12.

    CAS  Google Scholar 

  19. Verma RK, Verma L, Ranjan M, Verma BP, Mojumdar SC. Thermal analysis of 2-oxocyclopentanedithiocarboxylato complexes of iron(III), copper(II) and zinc(II) containing pyridine or morpholine as the second ligand. J Therm Anal Calorim. 2008;94:27–31.

    Article  CAS  Google Scholar 

  20. Verma RK, Verma L, Bhushan A, Verma BP. Thermal decomposition of complexes of cadmium(II) and mercury(II) with triphenylphosphanes. J Therm Anal Calorim. 2007;90:725–9.

    Article  CAS  Google Scholar 

  21. Brown ME, Gallagher PK. Introduction to recent advances, techniques and applications of thermal analysis and Calorimetry. In Brown ME, Gallagher PK, Editors. Hand book of thermal analysis and calorimetry. Elsevier: New York; 2008. pp. 1–12.

  22. Verma RK, Verma L, Chandra M, Verma BP. Kinetic parameters of thermal dehydration and decomposition from thermoanalytical curves of zinc dl-lactate. J Indian Chem Soc. 1998;75:162–4.

    CAS  Google Scholar 

  23. Singh RK, Yadav A, Narayan A, Singh AK, Verma L, Verma RK. Thermal, structural and magnetic studies on chromite spinel, synthesized by citrate precursor method and annealed at temperature 450 °C and 650 °C. J Therm Anal Calorim. 2012;107:197–204.

    Article  CAS  Google Scholar 

  24. Singh RK, Yadav A, Narayan A, Chandra M, Verma RK. Thermal, XRD and magnetization studies on ZnAl2O4 and NiAl2O4 spinels, synthesized by citrate precursor method and annealed at temperature 450°C and 650°C. J Therm Anal Calorim. 2012;107:205–10.

    Article  CAS  Google Scholar 

  25. Goldstein AN (ed.), Handbook of nanophase materials. New York: Marcel Dekker; 1997. p. 1.

  26. Panda RN, et al. Magnetic properties of nano-crystalline Gd or Pr substituted CoFe2O4 synthesized by the citrate precursor technique. J Magn Magn Mater. 2003;257:79–86.

    Article  CAS  Google Scholar 

  27. Sajjia M, Benyounis KY, Olabi AG. The simulation and optimization of heat treatment of cobalt ferrite nanoparticles prepared by sol–gel technique. Powder Technol. 2012;222:143–51.

    Article  CAS  Google Scholar 

  28. Cullity BD. Elements of X-ray diffraction. New York: Wiley; 1978. p. 101.

  29. Roisnel J, Rodrıguez-Carvajal J, WinPLOTR; Laboratoire Leon Brillouin (CEA-CNRS) Centre d’Etudes de Saclay: Gif sur Yvette Cedex, France, 2000.

  30. Rodriguez-Carvajal J. FullProf 2000: A Rietveld Refinement and Pattern Matching Analysis Program, (Version: April 2008), Laboratoire Léon Brillouin (CEA-CNRS), France.

  31. Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metal. 1953;1:22.

    Article  CAS  Google Scholar 

  32. Bhowmik RN. Lattice expansion and magnetic order in spinel oxide. Kolkata: Proceedings of National Conference on Nanoscience & Nanotechnology; 2009.

    Google Scholar 

  33. Chinnasamy CN, Jeyadevan B, Perales-Perez O, Shinoda K, Tohji K, Kasuya A. Growth dominant co-precipitation process to achieve high coercivity at room temperature in CoFe2O4 nanoparticles. IEEE Trans Magn. 2002;38(5):2640–2.

    Article  CAS  Google Scholar 

  34. Bahadur D. Current trends in applications of magnetic ceramic materials. Bull Mater Sci. 1992;15(5):431–9.

    Article  CAS  Google Scholar 

  35. Bandyopadhay AK. Nanomaterials. New. Delhi: New age international; 2007. pp. 254–267.

  36. Xi YY, Cheung TLY, Dickon HLN. Synthesis of ternary Zn x Cd1−xS nanowires by thermal evaporation and the study of their photoluminescence. Mater Lett. 2008;62:128–32.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.K., Narayan, A., Prasad, K. et al. Thermal, structural, magnetic and photoluminescence studies on cobalt ferrite nanoparticles obtained by citrate precursor method. J Therm Anal Calorim 110, 573–580 (2012). https://doi.org/10.1007/s10973-012-2728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2728-1

Keywords

Navigation