Skip to main content
Log in

Thermal transfer simulation regarding the rotational moulding of polyamide 11

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Simulation of thermal phenomena in rotational moulding is very important to follow the evolution of the temperature in various zones of this process. It was a question of modelling heat gradients developing in rotational moulding part. Thermal model tested take into account the temperature change (thermal transfer mechanism) of melting and crystallization pseudo-stages (enthalpy method). Series of tests in polyamide 11 (PA11) were carried out by means of rotational moulding STP LAB, and non-isothermal crystallization kinetics of rotational moulding PA11 grade are measured and analysed by DSC technique type TAQ20. A result of non-isothermal crystallization of the studied polyamide was confronted with Ozawa model. In order to test the validity degree of enthalpy method (layer to layer), another approach based on Ozawa model has also been used in the case of cooling pseudo-stage. As results, the rotational moulding of PA11 was successfully carried out. The simulation of the fusion and crystallization stages, by application of Ozawa model coupled with enthalpy method gave a good representation of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crawford RJ. Rotational moulding of plastic. 2nd ed. Wiley and Sons: Research Studies Press Ltd; 1996. p. 3–9.

    Google Scholar 

  2. Aramazotti D. Rotational moulding. In: Miller E, editor. Plastics products design handbook. New York: Marcel Dekker; 1983.

    Google Scholar 

  3. Xin W, Harkin-Jones EH, Crawford RJ, Fatnes AM. Rotational moulding of metallocene polyethylenes. Plast Rubber Compos. 2000;29:340–8.

    Google Scholar 

  4. Tcharkhtchi A, Barcelo P, Mazabraud P, Jousse F, Kearns MP. Study of adhesion between two layers in multilayers rotomolded products. Adv Eng Mater. 2002;4:475–8.

    Article  CAS  Google Scholar 

  5. Oliveira MJ, Cramez MC. Rotational molding of polyolefins: processing, morphology, and properties. J Macromol Sci Phys. 2001;40:457–71.

    Article  Google Scholar 

  6. Kontopoulou M, Bisaria M, Vlachopoulos J. An experimental study of rotational molding of polypropylene/polyethylene copolymers. Int Polym Process. 1997;12:165–73.

    CAS  Google Scholar 

  7. Greco A, Maffezzoli A, Calò E, Massaro C, Terzi R. An investigation into sintering of PA6 nanocomposite powders for rotational moulding. J Therm Anal Calorim. 2011;. doi:10.1007/s10973-011-1916-8.

    Google Scholar 

  8. Crawford RJ, Gibson S. Rotational moulding: the basis for designers. http://file.seekpart.com/keywordpdf/2011/1/12/201111252045548.pdf. Accessed 17 July 2012.

  9. Spence AG, Crawford RJ. The effect of processing variables on the formation and removal of bubbles in rotationally moulded products. Polym Eng Sci. 1996;36:993–1009.

    Article  CAS  Google Scholar 

  10. Kontopoulou M, Vlachopoulos J. Melting and densification of thermoplastic powders. Polym Eng Sci. 2001;41:155–69.

    Article  CAS  Google Scholar 

  11. Hu X, Bellehumeur CT. Modeling the morphology development of ethylene copolymers in rotational moulding. J Appl Polym Sci. 2006;102:5903–17.

    Article  Google Scholar 

  12. Crawford RJ, Nugent PJ. Impact strength of rotationally moulded polyethylene articles. Plast Rubber Compos Process Appl. 1992;17:33–41.

    Google Scholar 

  13. Greco A, Maffezzoli A. Powder shape analysis and sintering behavior of high density polyethylene powders for rotational molding. J Appl Polym Sci. 2004;92:449–60.

    Article  CAS  Google Scholar 

  14. Tcharkhtchi A, Chinesta F, Pérot E. Simulation of thermal phenomena on the interface molten polymer during rotational molding. Int Polym Process. 2004;19:296–302.

    CAS  Google Scholar 

  15. Zhou Y, Fernandez-Pello AC. An enthalpy-temperature hybrid method for solving phase-change problems and its application to polymer pyrolysis and ignition. Combust Theory Model. 2000;4:477–93.

    Article  CAS  Google Scholar 

  16. Greco A, Maffezzoli A, Vlachopoulos J. Simulation of heat transfer during rotational molding. Adv Polym Tech. 2003;22:271–9.

    Article  CAS  Google Scholar 

  17. Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12:150–8.

    Article  CAS  Google Scholar 

  18. Frank HP. Some oxidation characteristics of polypropylene. J polym sci. 1976;57:311–8.

    CAS  Google Scholar 

  19. Greco A, Maffezzoli A. Polymer melting and polymer powder sintering by thermal analysis. J Therm Anal Calorim. 2003;72:1167–74.

    Article  CAS  Google Scholar 

  20. Wunderlich B. Termination of crystallization or ordering of flexible, linear macromolecules. J Therm Anal Calorim. 2012;. doi:10.1007/s10973-012-2326-2.

    Google Scholar 

  21. Cebeci T. Convective heat transfer. Springer: Horizons publishing; 2002.

    Google Scholar 

  22. Crank J, Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat conduction type. Proc Camb Philos Soc. 1947;43:50–67.

    Article  Google Scholar 

  23. Thomas JW. Numerical partial differential equations: finite difference methods. Texts in applied mathematics 22. New York: Springer-Verlag; 1995.

    Google Scholar 

  24. Wilmott P, Howison S, Dewynne J. The Mathematics of Financial Derivatives. A Student Introduction. Cambridge: Cambridge University Press; 1995.

    Book  Google Scholar 

  25. Sarrabi S, Colin X, Tcharkhtchi A. Dégradation thermique du polypropylène au cours du rotomoulage. Matériaux et Techniques. 2008;96:253–61.

    Article  CAS  Google Scholar 

  26. Van Krevelen DW. Properties of polymers. Amerstadem: Elsevier Scientific Publishing; 1976.

    Google Scholar 

  27. Williams JCL. In nylon plastics handbook. New York: Hanser Publishers; 1995.

    Google Scholar 

  28. Gogos G, Olson LG, Liu X, Pasham VR. New models for rotational molding of plastics. Polym Eng Sci. 1998;38:1387–98.

    Article  CAS  Google Scholar 

  29. Gogos G, Olson LG, Liu X. Cycle time predictions for the rotational molding process with and without mold/part separation. Polym Eng Sci. 1999;39:617–29.

    Article  CAS  Google Scholar 

  30. Bouralis J, Maeder G. Elaboration-structure-propriétés normalisation. Paris: Afnor-Nathan; 1997.

    Google Scholar 

  31. Facy G, Pompidou M. Méthodologie, production et normalisation. Paris: Afnor-Nathan; 1992.

    Google Scholar 

  32. Duffo P, Monasse B, Haudin JM. Cast film extrusion of polypropylene. Thermomechanical and physical aspects. J Polym Eng. 1991;10:151–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Tcharkhtchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafsaoui, S.L., Benziane, M. & Tcharkhtchi, A. Thermal transfer simulation regarding the rotational moulding of polyamide 11. J Therm Anal Calorim 112, 285–292 (2013). https://doi.org/10.1007/s10973-012-2806-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2806-4

Keywords

Navigation