Skip to main content
Log in

Thermogravimetric analysis of lignocellulosic and microalgae biomasses and their blends during combustion

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetric analysis was used to study and compare the combustion of different blends of corn bioresidues with sunflower, rape and algae bioresidues. Non-isothermal thermogravimetric data were used to obtain the combustion kinetics of these bioresidues. This paper reports on the application of the Vyazovkin and Ozawa–Flynn–Wall isoconversional methods for the evaluation of kinetic parameters (energy activation, pre-exponential factor and order of reaction) for the combustion of the biomasses studied. Differences were found in the TG curves in accordance with the proximate analysis results for the cellulose, hemicellulose and lignin content of biomasses. The activation energy obtained from combustion (E ~ 151.6 kJ mol−1) was lower than that from the blends (similar values were obtained for corn–sunflower, E ~ 160.5 kJ mol−1 and corn–rape, E ~ 156.9 kJ mol−1) whereas the activation energy obtained from the microalgae was higher (E ~ 171.5 kJ mol−1). Both the Vyazovkin and Ozawa–Flynn–Wall methods yielded similar results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Khan AA, de Jong W, Jansens PJ, Spliethoff H. Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol. 2009;90:21–50.

    Article  CAS  Google Scholar 

  2. Berndes G, Hoogwijk M, Van den Broek R. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass Bioenergy. 2003;25:1–28.

    Article  Google Scholar 

  3. Mckendry P. Energy production from biomass (part. 1): overview of biomass. Bioresour Technol. 2002;83:37–46.

    Article  CAS  Google Scholar 

  4. Sanchez-Silva L, Lopez-Gonzalez D, Villaseñor J, Sanchez P, Valverde JL. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol. 2012;109:163–72.

    Article  CAS  Google Scholar 

  5. Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci. 2005;31:171–92.

    Article  CAS  Google Scholar 

  6. Qiu G. Testing of flue gas emissions of a biomass pellet boiler and abatement of particle emissions. Renew Energy. 2012;50:94–102.

    Article  Google Scholar 

  7. Fangxian L, Shizong L, Youzhi C. Thermal analysis study of the effect of coal-burning additives on the combustion of coals. J Therm Anal Calorim. 2009;95:633–8.

    Article  CAS  Google Scholar 

  8. Xiao H, Ma X, Lai Z. Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal. Appl Energy. 2009;86:1741–5.

    Article  CAS  Google Scholar 

  9. Gil MV, Riaza J, Álvarez L, Pevida C, Pis JJ, Rubiera F. A study of oxy-coal combustion with steam addition and biomass blending by thermogravimetric analysis. J Therm Anal Calorim. 2012;109:49–55.

    Article  CAS  Google Scholar 

  10. Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101:5601–8.

    Article  CAS  Google Scholar 

  11. Yorulmaz SY, Atimtay AT. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Process Technol. 2009;90(7–8):939–46.

    Article  CAS  Google Scholar 

  12. Sanchez ME, Otero M, Gomez X, Moran A. Thermogravimetric kinetic analysis of the combustion of biowastes. Renew Energy. 2009;34:1622–7.

    Article  CAS  Google Scholar 

  13. Pis JJ, de la Puente G, Fuente E, Morán A, Rubiera F. A study of the self-heating of fresh and oxidized coals by differential thermal analysis. Thermochim Acta. 1996;279:93–101.

    Article  CAS  Google Scholar 

  14. Haykiri-Açma H. Combustion characteristics of different biomass materials. Energy Convers Manag. 2003;44:155–62.

    Article  Google Scholar 

  15. Vyazovkin S, Lisnikovick AI. Transformation of “degree of conversion against temperature” into “degree of conversion against time” kinetic data. Russ J Phys Chem. 1988;62:1525–7.

    Google Scholar 

  16. Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally simulated reactions of solids. Int Rev Phys Chem. 1998;17:407–33.

    Article  CAS  Google Scholar 

  17. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  18. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    Article  CAS  Google Scholar 

  19. Tai Tan F, Wian Ma X, Feng C. Investigation on combustion of fire retardant board under different N2–O2 mixtures gas atmospheres by using thermogravimetric analysis. Constr Build Mater. 2011;25:2076–84.

    Article  Google Scholar 

  20. Varol M, Atimtay AT, Bay B, Olgun H. Investigation of co-combustion characteristics of low quality lignite coals and biomass with thermogravimetric analysis. Thermochim Acta. 2010;510:195–201.

    Article  CAS  Google Scholar 

  21. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583–97.

    Article  Google Scholar 

  22. Gentziz T, Chambers A. Physical structure changes of Canadian coals during combustion. Energy Sour. 1995;17:131–49.

    Article  Google Scholar 

  23. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal. 1970;2:301–24.

    Article  CAS  Google Scholar 

  24. Kneller WA. Physicochemical characterization of coal and coal reactivity: a review. Thermochim Acta. 1986;108:357–88.

    Article  CAS  Google Scholar 

  25. Ma B, Li X, Xu L, Wang K, Wang X. Investigation on catalyzed combustion of high ash coal by thermogravimetric analysis. Thermochim Acta. 2006;445:19–22.

    Article  CAS  Google Scholar 

  26. Nie Q-H, Sun S-Z, Li Z-Q. Thermogravimetric study on the combustion characteristics of brown coal blends. J Combust Sci Technol. 2001;7(1):72–6.

    CAS  Google Scholar 

  27. Li X-G, Ma B-G. Thermogravimetric analysis of the co-combustion of the blends with high ash coal and waste tyres. Thermochim Acta. 2006;441(1):79–83.

    Article  CAS  Google Scholar 

  28. Xie J-L, He F. Catalyzed combustion study of anthracite in cement kiln. J Chin Ceram Soc. 1998;26(6):792–5.

    CAS  Google Scholar 

  29. Otero M, Sánchez ME, Gómez X, Morán A. Thermogravimetric analysis of biowastes during combustion. Waste Manag. 2010;30:1183–7.

    Article  CAS  Google Scholar 

  30. Sima-Ella E, Mays TJ. Analysis of the oxidation reactivity of carbonaceous materials using thermogravimetric analysis. J Therm Anal Calorim. 2005;80:109–13.

    Article  CAS  Google Scholar 

  31. Vyazovkin S. Model-free kinetics. Staying free of multiplying entities without necessity. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  32. Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: I. Isothermal kinetic studies. Thermochim Acta. 2005;429:93–102.

    Article  CAS  Google Scholar 

  33. Vyazovkin S, Dollimore D. Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.

    Article  CAS  Google Scholar 

  34. Moreno RMB, Medeiros ES, Ferreira FC, Alves N, Gonçalves PS, Mattoso LHC. Thermogravimetric studies of decomposition kinetics of six different IAC Hevea rubber clones using Flynn–Wall–Ozawa approach. Plast Rubber Compos. 2006;35:15–21.

    Article  CAS  Google Scholar 

  35. Ramajo-Escalera B, Espina A, García JR, Sosa-Arnao JH, Nebra SA. Model-free kinetics applied to sugarcane bagasse combustion. Thermochim Acta. 2006;448:111–6.

    Article  CAS  Google Scholar 

  36. Silva AR, Crespi MS, Ribeiro CA, Oliveira SC, Silva MRS. Kinetic of thermal decomposition of residues from different kinds of composting. J Therm Anal Calorim. 2004;75:401–9.

    Article  CAS  Google Scholar 

  37. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  38. Tang Y, Ma X, Lai Z. Thermogravimetric analysis of combustion of microalgae and microalgae blended with waste in N2/O2 and CO2/O2 atmospheres. Bioresour Technol. 2011;102:1879–85.

    Article  CAS  Google Scholar 

  39. Haykiri-Açma H, Ersoy-Meriçboyu A, Küçükbayrak S. Effect of demineralization on the reactivity of lignites. Thermochim Acta. 2000;362:131–5.

    Article  Google Scholar 

  40. Küçükbayrak S, Haykiri-Açma H, Ersoy-Meriçboyu A. Effect of lignite properties on reactivity of lignite. Energy Convers Manag. 2001;42:613–26.

    Article  Google Scholar 

  41. Haykiri-Açma H, Ersoy-Meriçboyu A, Küçükbayrak S. Effect of mineral matter on the reactivity of lignite chars. Energy Convers Manag. 2001;42:11–20.

    Article  Google Scholar 

  42. Aboyade A, Hugo TJ, Carrier M, Meyer EL, Stahl R, Knoetze JH, Görgens JH. Non-isothermal kinetic analysis of the devolatilization of corn cobs and sugar cane bagasse in an inert atmosphere. Thermochim Acta. 2011;517:81–9.

    Article  CAS  Google Scholar 

  43. Zhao H, Yan H, Dong S, Zhang Y, Sun B, Zhang C, Ai Y, Chen B, Liu Q, Sui T, Qin S. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-2102-8.

  44. Ernesto VART, Ribeiro CA, Hojo O, Fertonani FL, Crespi MS. Thermal characterization of lignocellulosic residue from different sugarcanes. J Therm Anal Calorim. 2009;97:653–6.

    Article  CAS  Google Scholar 

  45. Wang XB, Si JP, Tan HZ, Niu YQ, Xu C, Xu TM. Kinetics investigation on the combustion of waste capsicum stalks in Western China using thermogravimetric analysis. J Therm Anal Calorim. 2012;109:403–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Resources Institute of University of León, which provided human and material assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López, R., Fernández, C., Gómez, X. et al. Thermogravimetric analysis of lignocellulosic and microalgae biomasses and their blends during combustion. J Therm Anal Calorim 114, 295–305 (2013). https://doi.org/10.1007/s10973-012-2843-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2843-z

Keywords

Navigation