Skip to main content
Log in

Thermal behaviour studies of procaine and benzocaine

Part 1. Kinetic analysis of the active substances under non-isothermal conditions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The analysed substances, procaine and benzocaine, are two anaesthetic agents currently being administered in tablet form, also in the topical (cream, gel, balm) and injectable dosage forms. The TG/DTG/DTA curves were obtained in air at different heating rates. For determination of the heat effects, the DTA curves (in μV) were changed with the heat flow curves (in mW), so that the peak area corresponds to an energy in J g−1 or kJ mol−1. The non-isothermal experiments are preformed to investigate the thermal degradation process of these active substances, both as a solid and are performed in a dynamic atmosphere of air at different heating rates, by heating from room temperature to 500 °C. The kinetic analysis was performed using the TG data in air for the first step of substance’s decomposition at four heating rates: 7, 10, 12 and 15 °C min−1. The data were processed according to an appropriate strategy to the following kinetic methods: Kissinger–Akahira–Sunose, Flynn–Wall–Ozawa, Friedman and NPK, to obtain realistic kinetic parameters, even if the decomposition process is a complex one. Thermal analysis was supplemented using Fourier Transform infrared spectroscopy coupled with the TG device to identify the anaesthetics with any products which may have formed (EGA—the evolved gas analysis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dhananjeyan MR, Trendel JA, Bykowski C, Sarver JG, Ando H, Erhardt PW. Rapid and sensitive HPLC assay for simultaneous determination of procaine and para-aminobenzoic acid from human and rat liver tissue extracts. J Chromatogr B. 2008;867:247–52.

    Article  CAS  Google Scholar 

  2. Lv G, Chen Z, Zheng J, Wei F, Jiang H, Zhang R, Wang X. Theoretical study of the interaction pattern and the binding affinity between procaine and DNA bases. J Mol Struct. 2010;939:44–52.

    Article  CAS  Google Scholar 

  3. Shin S-C, Lee J-W, Yang K-H, Lee CH. Preparation and evaluation of bioadhesive benzocaine gels for enhanced local anesthetic effects. Int J Pharm. 2003;260:77–81.

    Article  CAS  Google Scholar 

  4. So T-Y, Farrington E. Topical benzocaine-induced methemoglobinemia in the pediatric population. J Pediatr Health Care. 2008;22:335–9.

    Article  Google Scholar 

  5. Schmidt AC. Structural characteristics and crystal polymorphism of three local anaesthetic bases: crystal polymorphism of local anaesthetic drugs: part VII. Int J Pharm. 2005;298:186–97.

    Article  CAS  Google Scholar 

  6. Byrn SR, Pfeiffer RR, Stowell JG. Solid-state chemistry of drugs. 2nd ed. West Lafayette: SSCI, Inc.; 1999. p. 279–304.

    Google Scholar 

  7. Fulias A, Vlase T, Vlase G, Doca N. Thermal behaviour of cephalexin in different mixtures. J Therm Anal Calorim. 2010;99:987–92.

    Article  CAS  Google Scholar 

  8. Peres-Filho MJ, Gaeti MPN, Oliveira SR, Marreto RN, Lima EM. Thermoanalytical investigation of olanzapine compatibility with excipients used in solid oral dosage forms. J Therm Anal Calorim. 2011;104:255–60.

    Article  CAS  Google Scholar 

  9. Yoshida MI, Oliveira MA, Gomes ECL, Mussel WN, Castro WV. Thermal characterization of lovastatin in pharmaceutical formulations. J Therm Anal Calorim. 2011;106:657–64.

    Article  CAS  Google Scholar 

  10. Maximiano FP, Novack KM, Bahia MT, de Sá-Barreto LL, da Cunha-Filho MSS. Polymorphic screen and drug-excipient compatibility studies of the antichagasic benznidazole. J Therm Anal Calorim. 2011;106:819–24.

    Article  CAS  Google Scholar 

  11. Vlase T, Vlase G, Birta N, Doca N. Comparative results of kinetic data obtained with different methods for complex decomposition steps. J Therm Anal Calorim. 2007;88:631–5.

    Article  CAS  Google Scholar 

  12. Vlase T, Vlase G, Doca M, Doca N. Specificity of decomposition of solids in non-isothermal conditions. J Therm Anal Calorim. 2003;72:597–604.

    Article  CAS  Google Scholar 

  13. Council of Europe. European pharmacopoeia. 6th ed. Strasbourg: Council of Europe; 2007.

    Google Scholar 

  14. Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci C. 1965;6:183–7.

    Article  Google Scholar 

  15. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  16. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  17. Akahira T, Sunose T. Joint convention of four electrical institutes. Research report Chiba Institute of Technology. Sci Technol. 1971;16:22–31.

    Google Scholar 

  18. Serra R, Nomen R, Sempere J. The non-parametric kinetics. A new method for the kinetic study of thermoanalytical data. J Therm Anal Calorim. 1998;52:933–43.

    Article  CAS  Google Scholar 

  19. Serra R, Sempere J, Nomen R. A new method for the kinetic study of thermoanalytical data: the non-parametric kinetics method. Thermochim Acta. 1998;316:37–45.

    Article  CAS  Google Scholar 

  20. Vlase T, Vlase G, Doca N, Ilia G, Fuliaş A. Coupled thermogravimetric-IR techniques and kinetic analysis by non-isothermal decomposition of Cd2+ and Co2+ vinyl-phosphonates. J Therm Anal Calorim. 2009;97:467–72.

    Article  CAS  Google Scholar 

  21. Bodescu AM, Sîrghie C, Vlase T, Doca N. Kinetics of thermal decomposition of natrium oxalato-oxo-diperoxo molibdate. J Therm Anal Calorim. 2011;. doi:10.1007/s10973-011-1993-8.

    Google Scholar 

  22. Vlase T, Vlase G, Doca N, Bolcu C. Processing of non-isothermal TG data. Comparative kinetic analysis with NPK method. J Therm Anal Calorim. 2005;80:59–64.

    Article  CAS  Google Scholar 

  23. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Sci. 1962;6:639–46.

    Article  CAS  Google Scholar 

  24. Wall ME. Singular value decomposition and principal component analysis. In: Berrar DP, Dubitzky W, Granzow M, editors. A practical approach to microarray data analysis. Norwell: Kluwer; 2003. p. 91–109.

    Chapter  Google Scholar 

  25. Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Vlase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulias, A., Vlase, G., Grigorie, C. et al. Thermal behaviour studies of procaine and benzocaine. J Therm Anal Calorim 113, 265–271 (2013). https://doi.org/10.1007/s10973-013-2959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-2959-9

Keywords

Navigation