Skip to main content
Log in

Environmental ageing of aerospace epoxy adhesive in bonded assembly configuration

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Aerospace epoxy adhesive has been subjected to various environmental ageing processes. A comparative study is performed between ageing under vacuum and atmospheric pressure for various ageing temperatures. The macroscopic behaviour of the assemblies is investigated by single lap shear test. Glass transition temperature of the bulk adhesive is followed by differential scanning calorimetry. Molecular mobility of the adhesive in service configuration is studied by dynamic dielectric spectroscopy. No significant difference is noticed due to an ageing under vacuum. A comparison between test results after each isotherm ageing highlights the temperature influence. For ageing of adhesive in a vitreous state, the crosslink density increases. For ageing of adhesive in a rubbery state, a severe decrease of glass transition is observed. The influence of additives and physical ageing is null. This plasticisation effect might be associated with the homogenisation of the structure of epoxy due to the molecular mobility of loose chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. George PE, Dursch HW. Low earth orbit effects on organic composites flown on the long duration exposure facility. J Adv Mater. 1994;25(3):10–9.

    CAS  Google Scholar 

  2. European Cooperation for Space Standardization. ECSS-Q-70-71A rev. 1. Space product assurance, Data for selection of space materials and processes. ECSS Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk; 2004.

  3. Chevalier M, Dantras E, Tonon C, Guigue P, Lacabanne C, Puig C, et al. Correlation between sub-Tg relaxation processes and mechanical behavior for different hydrothermal ageing conditions in epoxy assemblies. J Appl Polym Sci. 2010;115(2):1208–14. doi:10.1002/app.31253.

    Article  CAS  Google Scholar 

  4. European Cooperation for Space Standardization. ECSS-Q-ST-70-04C. Thermal testing for the evaluation of space materials, processes, mechanical parts and assemblies: ECSS Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk; 2009.

  5. Rinaldi G, Maura G. Durable glass-epoxy composites cured at low temperatures - Effects of thermal cycling, UV irradiation and wet environment. Polym Int. 1993;31(4):339–45. doi:10.1002/pi.4990310406.

    Article  CAS  Google Scholar 

  6. Shin KB, Kim CG, Hong CS, Lee HH. Prediction of failure thermal cycle in graphite/epoxy composite materials under simulated low earth orbit environments. Compos. B. 2000;31(3):223–35. doi:10.1016/S1359-8368(99)00073-6.

    Article  Google Scholar 

  7. Grossman E, Gouzman I. Space environment effects on polymers in low earth orbit. Nucl Instrum Methods Phys Res Sect. B. 2003;208:48–57. doi:10.1016/S0168-583X(03)00640-2.

    Article  CAS  Google Scholar 

  8. Gao Y, He S, Yang D, Liu Y, Li Z. Effect of vacuum thermo-cycling on physical properties of unidirectional M40 J/AG-80 composites. Compos. B. 2005;36(4):351–8. doi:10.1007/1-4020-4319-8_19.

    Article  Google Scholar 

  9. Han JH, Kim CG. Low earth orbit space environment simulation and its effects on graphite/epoxy composites. Compos Struct. 2006;72(2):218–26. doi:10.1016/j.compstruct.2004.11.007.

    Article  Google Scholar 

  10. Hancox NL. Thermal effect on polymer matrix composites: part1 Thermal cycling. Mater Des. 1998;19(3):85–91. doi:10.1016/S0261-3069(98)00018-1.

    Article  CAS  Google Scholar 

  11. Rouquie S, Lafarie-Frenot MC, Cinquin J, Colombaro AM. Thermal cycling of carbon/epoxy laminates in neutral and oxidative environments. Compos Sci Technol. 2005;65(3–4):403–9. doi:10.1016/j.compscitech.2004.09.007.

    Article  CAS  Google Scholar 

  12. Burton BL. The thermooxidative stability of cured epoxy resins I. J Appl Polym Sci. 1993;47(10):1821–37. doi:10.1002/app.1993.070471013.

    Article  CAS  Google Scholar 

  13. Barral L, Cano J, Lopez J, Nogueira P, Ramirez C. Effect of thermal degradation on the mechanical properties of a diglycidyl ether of bisphenol A/1,3-bisaminomethylcyclohexane (DGEBA/1,3-BAC) epoxy resin system. J Appl Polym Sci. 1997;63(13):1841–9. doi:10.1002/(SICI)1097-4628(19970328)63:13<1841:AID-APP17>3.0.CO;2-0.

    Article  CAS  Google Scholar 

  14. Lee JY, Shim MJ, Kim SW. Thermal decomposition kinetics of an epoxy resin with rubber-modified curing agent. J Appl Polym Sci. 2001;81(2):479–85. doi:10.1002/app.1460.

    Article  CAS  Google Scholar 

  15. Dao B, Hodgkin J, Krstina J, Mardel J, Tian W. Accelerated aging versus realistic aging in aerospace composite materials. I. The chemistry of thermal aging in a low-temperature-cure epoxy composite. J Appl Polym Sci. 2006;102(5):4291–303. doi:10.1002/app.24862.

    Google Scholar 

  16. Tian W, Hodgkin J. Long-term aging in a commercial aerospace composite sample: chemical and physical changes. J Appl Polym Sci. 2010;115(5):2981–5. doi:10.1002/app.31394.

    Article  CAS  Google Scholar 

  17. Dauphin J. Materials in space: working in a vacuum. Vacuum. 1982;32(10–11):669–73.

    Article  CAS  Google Scholar 

  18. Beckman W. Gas desorption of some rubber type materials. Vacuum. 1963;13:349–57.

    Article  Google Scholar 

  19. Buch X, Shanahan MER. Thermal and thermo-oxidative ageing of an epoxy adhesive. Polym Degrad Stab. 2000;68(3):403–11. doi:10.1016/S0141-3910(00)00028-8.

    Article  CAS  Google Scholar 

  20. European Cooperation for Space Standardization. ECSS-Q-ST-70-02C. Thermal vacuum outgassing test for the screening of space materials: ECSS Secretariat ESA-ESTEC Requirements & Standards Division Noordwijk; 2008.

  21. Buch X, Shanahan MER. Influence of the gaseous environment on the thermal degradation of a structural epoxy adhesive. J Appl Polym Sci. 2000;76(7):987–92. doi:10.1002/(SICI)1097-4628(20000516)76:7<987:AID-APP1>3.0.CO;2-1.

    Article  CAS  Google Scholar 

  22. Hutchinson JM. Physical aging of polymers. Prog Polym Sci. 1995;20(4):703–30. doi:10.1016/0079-6700(94)00001-I.

    Article  CAS  Google Scholar 

  23. Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW. Relaxation in glassforming liquids and amorphous solids. J Appl Phys. 2000;88(6):3113–58. doi:10.1063/1.1286035.

    Article  CAS  Google Scholar 

  24. Odegard GM, Bandyopadhyay A. Physical aging of epoxy polymers and their composites. J Polym Sci Part B: Polym Phys. 2011;49(24):1695–716. doi:10.1002/polb.22384.

    Article  CAS  Google Scholar 

  25. Cook WD, Mehrabi M, Edward GH. Ageing and yielding in model epoxy thermosets. Polymer. 1999;40(5):1209–18. doi:10.1016/S0032-3861(98)00343-7.

    Article  CAS  Google Scholar 

  26. Barral L, Cano J, Lopez J, Lopez-Bueno I, Nogueira P, Abad MJ, et al. Physical aging of a tetrafunctional/phenol novolac epoxy mixture cured with diamine—DSC and DMA measurements. J Therm Anal Calorim. 2000;60(2):391–9. doi:10.1023/a:1010125022491.

    Article  CAS  Google Scholar 

  27. Dantras E, Dandurand J, Lacabanne C, Caminade AM, Majoral JP. Enthalpy relaxation in phosphorus-containing dendrimers. Macromolecules. 2002;35(6):2090–4. doi:10.1021/ma011228p.

    Article  CAS  Google Scholar 

  28. Ramírez C, Abad M, Barral L, Cano J, Díez F, López J. Study of the physical aging of an epoxy/cycloaliphatic amine resin modified with abs. J Therm Anal Calorim. 2002;70(1):85–92. doi:10.1023/a:1020645315107.

    Article  Google Scholar 

  29. Saiter A, Couderc H, Grenet J. Characterisation of structural relaxation phenomena in polymeric materials from thermal analysis investigations. J Therm Anal Calorim. 2007;88(2):483–8. doi:10.1007/s10973-006-8117-x.

    Article  CAS  Google Scholar 

  30. Boye J, Martinez JJ, Demont P, Lacabanne C. Molecular mobility associated with the Tg in DGEBAn̄-DDM networks. Thermochim Acta. 1991;192:147–54. doi:10.1016/0040-6031(91)87156-q.

    Article  CAS  Google Scholar 

  31. Halary JL. Structure-property relationships in epoxy-amine networks of well-controlled architecture. High Perform Polym. 2000;12(1):141–53. doi:10.1088/0954-0083/12/1/311.

    Article  CAS  Google Scholar 

  32. Havriliak S, Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer. 1967;8:161–210. doi:10.1016/0032-3861(67)90021-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Dantras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Causse, N., Dantras, E., Tonon, C. et al. Environmental ageing of aerospace epoxy adhesive in bonded assembly configuration. J Therm Anal Calorim 114, 621–628 (2013). https://doi.org/10.1007/s10973-013-3009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3009-3

Keywords

Navigation