Skip to main content
Log in

Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal degradation behavior of the biocomposite with thermoplastic starch (TPS), poly(ε-caprolactone) (PCL) and bleached sisal fibers were investigated by thermogravimetry analysis (TG/DTG) under synthetic air atmosphere, differential scanning calorimetry, and their crystal structure by X-ray diffraction. Applying the non-isothermal Ozawa method, the TG/DTG curves average activation energy could be obtained for thermal degradation of the biocomposites with 5, 10, and 20 % of bleached sisal fibers. The apparent activation energy values for the biocomposites decreased when compared with the TPS/PCL blend, requiring lower energy to recycle this material. However, continuous addition of sisal fibers increased the activation energy of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cyras VP, Martucci JF, Iannace S, Vazquez A. Influence of the fiber content and the processing conditions on the flexural creep behavior of sisal–PCL–starch composites. J Thermoplast Compos. 2000;15:253–65.

    Article  Google Scholar 

  2. Whisler RL, Memiller JN, Paschall EF. Starch chemistry and technology. New York: Academic Press; 1984.

    Google Scholar 

  3. Peanasky JS, Long JM, Wool RP. Percolation effects in degradable polyethylene–starch blends. J Polym Sci. 1991;29:565–79.

    Article  CAS  Google Scholar 

  4. George ER, Sullivan TM, Park EH. Thermoplastic starch blends with a poly(ethylene-co-vinyl alcohol): processability and physical properties. Polym Eng Sci. 1994;34:17–23.

    Article  CAS  Google Scholar 

  5. Swanson CL, Shogren RL, Fanta GF, Iman SH. Starch–plastic materials—preparation, physical properties, and biodegradability (a review of recent USDA research). J Environ Polym Degrad. 1993;1:155–66.

    Article  CAS  Google Scholar 

  6. Raghavan D, Emekalan A. Characterization of starch/polyethylene and starch/polyethylene/poly(lactic acid) composites. Polym Degrad Stab. 2001;72:509–17.

    Article  CAS  Google Scholar 

  7. Griffith LG. Polymeric biomaterials. Acta Mater. 2000;48:263–77.

    Article  CAS  Google Scholar 

  8. Chandra R, Rustgi R. Biodegradable polymers. Prog Polym Sci. 1998;23:1273–335.

    Article  CAS  Google Scholar 

  9. Darwis D, Mitomo H, Enjoji T, Yoshii F, Makuuchi K. Enzymatic degradation of radiation crosslinked poly(3-caprolactone). Polym Degrad Stab. 1998;62:259–65.

    Article  CAS  Google Scholar 

  10. Yu L, Dean K, Li L. Polymer blends and composites from renewable resources. Prog Polym Sci. 2006;31:576–602.

    Article  CAS  Google Scholar 

  11. Bledzki AK, Gassan J. Composites reinforced with cellulose based fibres. Prog Polym Sci. 1999;24:221–74.

    Article  CAS  Google Scholar 

  12. Mohanty AK, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng. 2000;276(277):1–24.

    Article  Google Scholar 

  13. Nishino T, Hirao K, Kotera M, Nakamae K, Inagaki H. Kenaf reinforced biodegradable composite. Compos Sci Technol. 2003;63:1281–6.

    Article  CAS  Google Scholar 

  14. Wong S, Shanks R, Hodzic A. Properties of poly (3-hydroxybutyric acid) composites with flax fibers modified by plasticiser absorption. Macromol Mater Eng. 2002;287:647–55.

    CAS  Google Scholar 

  15. Alvarez V, Vázquez A. Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrad Stab. 2004;84:13–21.

    Article  CAS  Google Scholar 

  16. Campos A, Teixeira EM, Marconcini JM, Chiou B-S, Orts WJ, Wood D, Mattoso LHC, Imam SH. Starch/polycaprolactone-containing composites reinforced with pre-treated sisal fibers. Trends Polym Sci. 2011;15:89–99.

    CAS  Google Scholar 

  17. Sivalingam G, Karthik R, Madras G. Kinetics of thermal degradation of poly (ε-caprolactone). J Anal Appl Pyrolysis. 2003;70:631–47.

    Article  CAS  Google Scholar 

  18. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  19. Sathasivam K, Haris MRHM. Thermal properties of modified banana trunk fibers. J Therm Anal Calorim. 2012;108:9–17.

    Article  CAS  Google Scholar 

  20. Sun JX, Sun XF, Zhao H, Sun RC. Isolation and characterization of cellulose from sugarcane bagasse. Polym Degrad Stab. 2004;84(2):331–9.

    Article  CAS  Google Scholar 

  21. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc.;65(38):1881–6.

  22. Carmona VB, Oliveira RM, Silva WTL, Mattoso LHC, Marconcini JM. Nanosilica from rice husk: extraction and characterization. Ind Crop Prod. 2013;43:291–6.

    Article  CAS  Google Scholar 

  23. Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V. Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym. 2009;75:172–9.

    Article  CAS  Google Scholar 

  24. Kesel CD, Lefevre C, Nagry JB, David C. Blends of polycaprolactone with polyvinylalcohol: a DSC, optical microscopy and solid state NMR study. Polymer. 1999;40:1969–78.

    Article  Google Scholar 

  25. Borysiak S, Garbaczyk J. Applying the WAXS method to estimate the supermolecular structure of cellulose fibres after mercerisation. Fibres Text East Eur. 2003;11:104–7.

    Google Scholar 

  26. Hulleman SHD, Kalisvaart MG, Jansen FHP, Feil H, Vliegenthart JFG. Origins of B-type crystallinity in glycerol-plasticised, compression-molded potato starches. Carbohyd Polym. 1999;39:351–60.

    Article  CAS  Google Scholar 

  27. Tomczak F, Satyanarayana KG, Sydenstricker THD. Studies on lignocellulosic fibers of Brazil: part III—morphology and properties of Brazilian curaua fibers. Compos Part A. 2007;38:2227–36.

    Article  Google Scholar 

  28. Guinesi LS, da Róz AL, Corradini E, Teixeira EM, Curvelo AAS. Kinetics of thermal degradation applied to starches from different botanical origins by non-isothermal procedures. Thermochim Acta. 2006;447:190–6.

    Article  CAS  Google Scholar 

  29. Draye A, Persenaire O, Brozek O, Roda J, Kosek T, Dubois Ph. Thermogravimetric analysis of poly(ε-caprolactam) and poly[(ε-caprolactam)-co-(ε-caprolactone)] polymers. Polymer. 2001;42:8325–32.

    Article  CAS  Google Scholar 

  30. Aoyagi Y, Yamashita K, Doi Y. Thermal degradation of poly[(R)-3-hydroxybutyrate], poly[ε-caprolactone], and poly[(S)-lactide]. Polym Degrad Stab. 2002;76:53–9.

    Article  CAS  Google Scholar 

  31. Di Franco CR, Cyras VP, Busalmen JP, Ruseckaite RA, Vásquez A. Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polym Degrad Stab. 2004;86:95–103.

    Article  Google Scholar 

  32. Yang H, Yan R, Chen H, Lee DH. Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis fuel. 2007;86:1781–8.

    CAS  Google Scholar 

  33. Martin AR, Alice M, Odilon RRF, Mattoso LHC. Studies on the thermal properties of sisal fiber and its constituents. Thermochim Acta. 2010;506:14–9.

    Article  CAS  Google Scholar 

  34. Ruseckaite R, Jiménez A. Thermal degradation of mixtures of polycaprolactone with cellulose derivatives. Polym Degrad Stab. 2003;81:353–8.

    Article  CAS  Google Scholar 

  35. Avérous L, Le Digabel F. Properties of biocomposites based on lignocellulosic fillers. Carbohyd Polym. 2006;66:480–93.

    Article  Google Scholar 

  36. Shuttleworth PS, Budarin V, Clark JH. Thermal investigation of “molten starch”. J Therm Anal Calorim. 2011;105:577–81.

    Article  CAS  Google Scholar 

  37. Mansaray KG, Ghaly AE. Determination of kinetic parameters of rice husks in oxygen using thermogravimetric analysis. Biomass Bioenerg. 1999;17:19–31.

    Article  CAS  Google Scholar 

  38. Sonobe T, Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel. 2008;87:414–21.

    Article  CAS  Google Scholar 

  39. Borysiak S. Supermolecular structure of wood/polypropylene composites: I. The influence of processing parameters and chemical treatment of the filler. Polym Bull. 2009;64:275–90.

    Article  Google Scholar 

  40. He Y, Inoue Y. Novel FTIR method for determining the crystallinity of poly (3-caprolactone). Polym Int. 2000;49:623–6.

    Article  CAS  Google Scholar 

  41. Siqueira G, Bras J, Dufresne A. Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 2009;10:425–32.

    Article  CAS  Google Scholar 

  42. Borysiak S. Influence of wood mercerization on the crystallization of polypropylene in wood/PP composites. J Therm Anal Calorim. 2012;109:595–603.

    Article  CAS  Google Scholar 

  43. Di Y, Iannace S, Maio ED, Nicolais L. Nanocomposites by melt intercalation based on polycaprolactone and organoclay. J Polym Sci. 2003;41:670–8.

    Article  CAS  Google Scholar 

  44. Chen E, Wu T. Isothermal crystallization kinetics and thermal behavior of poly(3-caprolactone)/multi-walled carbon nanotube composites. Polym Degrad Stab. 2007;92:1009–15.

    Article  CAS  Google Scholar 

  45. Ahmed J, Auras R, Kijchavengkul T, Varshney SK. Rheological, thermal and structural behavior of poly(ε-caprolactone) and nanoclay blended films. J Food Eng. 2012;111:580–9.

    Article  CAS  Google Scholar 

  46. Campos A, Tonoli GHD, Marconcini JM, Mattoso LHC, Klamczynski A, Gregorski KS, Wood D, Williams T, Chiou B-S, Imam SH. TPS/PCL composite reinforced with treated sisal fibers: property, biodegradation and water-absorption. J Polym Environ. 2012; doi:10.1007/s10924-012-0512-8.

    Google Scholar 

  47. Cheng HKF, Sahoo NG, Lu X, Li L. Thermal kinetics of montmorillonite nanoclay/maleic anhydride-modified polypropylene nanocomposites. J Therm Anal Calorim. 2012;109:17–25.

    Article  CAS  Google Scholar 

  48. Shanks RA, Gunaratne LMWK. Gelatinization and retrogradation of thermoplastic starch characterized using modulated temperature differential scanning calorimetry. J Therm Anal Calorim. 2011;106:93–9.

    Article  CAS  Google Scholar 

  49. Magalhaes NF, Andrade CT. Thermoplastic corn starch/clay hybrids: effect of clay type and content on physical properties. Carbohydr Polym. 2009;75:712–8.

    Article  CAS  Google Scholar 

  50. Xing Z, Yang G. Crystallization, melting behavior, and wettability of poly(ε-caprolactone) and poly(ε-caprolactone)/poly(N-vinylpyrrolidone) blends. J Appl Polym Sci. 2010;115:2747–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of the projects granted by FAPESP (2008/08264-9), Capes, CNPq, FINEP, and Embrapa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Manoel Marconcini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmona, V.B., de Campos, A., Marconcini, J.M. et al. Kinetics of thermal degradation applied to biocomposites with TPS, PCL and sisal fibers by non-isothermal procedures. J Therm Anal Calorim 115, 153–160 (2014). https://doi.org/10.1007/s10973-013-3259-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3259-0

Keywords

Navigation