Skip to main content
Log in

Thermal and kinetic analysis of uranium salts

Part III. Uranium(IV) oxalate hydrates

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of U(C2O4)2·6H2O was studied using TG method in nitrogen, air, and oxygen atmospheres. The decomposition proceeded in five stages. The first three stages were dehydration reactions and corresponded to removal of four, one, and one mole water, respectively. Anhydrous salt decomposed to oxide products in two stages. The decomposition products in nitrogen atmosphere were different from those in air and oxygen atmospheres. In nitrogen atmosphere UO1.5(CO3)0.5 was the first product and U2O5 was the second product, while these in air and oxygen atmospheres were UO(CO3) and UO3, respectively. The second decomposition products were not stable and converted to stable oxides (nitrogen: UO2, air–oxygen: U3O8). The kinetics of each reaction was investigated with using Kissinger–Akahira–Sunose and Flynn–Wall–Ozawa methods. These methods were combined with modeling equations for thermodynamic functions, the effective models were investigated and thermodynamic values were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Tel H, Bülbül M, Eral M, Altaş Y. Preparation and characterization of uranyl oxalate powders. J Nucl Mater. 1999;275:146–50.

    Article  CAS  Google Scholar 

  2. Altaş Y, Eral M, Tel H. Preparation of homogenous (Th0.8U0.2)O2 powders by mechanical blending of Th(C2O4)2·6H2O and U(C2O4)2·6H2O powders. J Nucl Mater. 2001;294:344–8.

    Article  Google Scholar 

  3. Wendlandt WW, George TD, Horton GR. The thermal decomposition of thorium(IV), uranium (IV), and the rare-earth metal (III) oxalate hydrates. Differential thermal analysis and weight-loss studies. J Inog Nucl Mater. 1961;273:280–6.

    Google Scholar 

  4. Duvieubourg-Garela L, Vigier N, Abraham F, Grandjean S. Adaptable coordination of U(IV) in the 2D-(4,4) uranium oxalate network: from 8 to 10 coordinations in the uranium (IV) oxalate hydrates. J Solid State Chem. 2008;181:1899–908.

    Article  CAS  Google Scholar 

  5. Cetişli H, Çılgı GK, Donat R. Thermal and kinetic analysis of uranium salts Part 1. Uranium (VI) oxalate hydrates. J Therm Anal Calorim. 2012;108:1213–22.

    Article  Google Scholar 

  6. Çılgı GK, Cetişli H, Donat R. Thermal and kinetic analysis of uranium salts Part 2. Uranium (VI) acetate hydrates. J Therm Anal Calorim. 2012;110:127–35.

    Article  Google Scholar 

  7. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Thermal Anal. 1970;2:301–24.

    Article  CAS  Google Scholar 

  8. Doyle CD. Kinetic analysis of derivative curves in thermal analysis. Makromol Chem. 1964;80:220–4.

    Article  CAS  Google Scholar 

  9. Çılgı GK, Cetişli H. Thermal decomposition kinetics of aluminum sulfate hydrate. J Therm Anal Calorim. 2009;98:855–61.

    Article  Google Scholar 

  10. Ocakoğlu K, Emen FM. Thermal analysis of cis-(dithiocyanato)(1,10-phenanthroline-5,6-dione)(4,40-dicarboxy-2,20-bipyridyl)ruthenium(II) photosensitizer. J Therm Anal Calorim. 2011;104:1017–22.

    Article  Google Scholar 

  11. Vecchio S, Materazzi S, Kurdziel K. Thermal decomposition kinetics of palladium(II)1-allylimidazole complexes. Int J Chem Kinet. 2005;37:667–74.

    Article  CAS  Google Scholar 

  12. Fernandez d’Arlas B, Rueda L, Stefani PM, De la Cabaa K, Mondragona I, Eceiza A. Kinetic and thermodynamic studies of the formation of a polyurethane based on 1,6-hexamethylene diisocyanate and poly(carbonate-co-ester)diol. Thermochim Acta. 2007;459:94–103.

    Article  Google Scholar 

  13. Haydary J, Jelemenský Ľ, Gašparoviĉ L, Markoš J. Influence of particle size and kinetic parameters on tire pyrolysis. J Anal Appl Pyrol. 2012;97:73–9.

    Article  CAS  Google Scholar 

  14. Gabal MA. Non-isothermal studies for the decomposition course of CdC2O4–ZnC2O4 mixture in air. Thermochim Acta. 2004;412:55–62.

    Article  CAS  Google Scholar 

  15. Gabal MA, El-Bellihi AA, El-Bahnasawy HH. Non-isothermal decomposition of zinc oxalate–iron(II) oxalate mixture. Mater Chem Phys. 2003;81:174–82.

    Article  CAS  Google Scholar 

  16. Budrugeac P, Segal E. On the use of Diefallah’s composite integral method for the non-isothermal kinetic analysis of heterogeneous solid-gas reactions. J Therm Anal Calorim. 2005;82:677–80.

    Article  CAS  Google Scholar 

  17. Wendlant WM. Thermal Analysis. New York: Wiley; 1986.

    Google Scholar 

  18. Vyazovkin S, Burnhamb AK, Criadoc JM, Pérez-Maquedac LA, Popescud C, Sbirrazzuolie N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  19. Noisong P, Danvirutai C, Boonchom B. Thermodynamic and kinetic properties of the formation of Mn2P2O7 by thermal decomposition of Mn(H2PO2)2·H2O. J Chem Eng Data. 2009;54:871–5.

    Article  CAS  Google Scholar 

  20. Straszko J, Olszak-Humienik M, Mozejko J. Kinetics of thermal decomposition of ZnSO4·7H2O. Thermochim Acta. 1997;292:145–50.

    Article  CAS  Google Scholar 

  21. The International Centre for Diffraction Data File No. 35-0834 and 8-0244.

  22. Favergeon L, Pijolat M, Helbert C. A mechanism of nucleation during thermal decomposition of solids. J Mater Sci. 2008;43:4675–83.

    Article  CAS  Google Scholar 

  23. Galwey AK, Spinicci R, Guarini GT. Nucleation and growth process occurring during the dehydration of certain alums: the generation, the development and the function of the reaction interface. Proc R Soc Lond A. 1981;378:477–505.

    Article  CAS  Google Scholar 

  24. Koga N, Tanaka H. A physico-geometric approach to the kinetics of solid state reactions as exemplified by the thermal dehydration and decomposition of inorganic solids. Thermochim Acta. 2002;388:41–61.

    Article  CAS  Google Scholar 

  25. Sikorska M. Kinetics of dehydration of lanthanide (III) 2-amino-4-chlorobezoates. J Therm Anal Calorim. 1999;55:653–9.

    Article  CAS  Google Scholar 

  26. Sikorska-Iwan M, Mrozek R, Rzqzyñska Z. Thermal analysis of manganese(II) complexes with l-proline and l-hydroxyproline. J Therm Anal Calorim. 2000;60:139–44.

    Article  CAS  Google Scholar 

  27. Boonchom B, Puttawong S. Thermodynamics and kinetics of the dehydration reaction of FePO4·2H2O. Phys B. 2010;405:2350–5.

    Article  CAS  Google Scholar 

  28. Boonchom B. Kinetics and thermodynamic properties of the thermal decomposition of manganese dihydrogenphosphate dihydrate. J Chem Eng Data. 2008;53:1553–8.

    Article  Google Scholar 

  29. Chaiyo N, Muanghlua R, Niemcharoen S, Boonchom B, Seeharaj P, Vittayakorn N. Non-isothermal kinetics of the thermal decomposition of sodium oxalate Na2C2O4. J Therm Anal Calorim. 2012;107:1023–9.

    Article  CAS  Google Scholar 

  30. Vlaev LT, Gospodinov GG. Study on the kinetics of the isothermal decomposition of selenites from IIIB group of the periodic system. Thermochim Acta. 2001;370:15–9.

    Article  CAS  Google Scholar 

  31. Singh BK, Sharma RK, Garg BS. Kinetics and molecular modeling of biologically active glutathione complexes with lead(II) ions. J Therm Anal Calorim. 2006;84:593–600.

    Article  CAS  Google Scholar 

  32. Liu B, Li Y, Kim I, Shin B, Yoon DY, Zhang L, Ji R, Yan W. Thermal characterization and thermal degradation of poly(norbornene-2,3-dicarboxylic acid dialkyl esters) synthesized by vinyl addition polymerization. Polym Degrad Stabil. 2007;92:868–75.

    Article  CAS  Google Scholar 

  33. Mukherjee A, Mishra S, Krishnamurthy N. Thermogravimetric studies and kinetics of decomposition of ammonium yttrium fluoride. Reac Kinet Mech Cat. 2011;103:53–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Turkish Scientific and Technological Research Council through Grant # 107T293(TBAG-HD/282) and by Pamukkale University through Grant # 2009FBE001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülbanu Koyundereli Çılgı.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çılgı, G.K., Cetişli, H. & Donat, R. Thermal and kinetic analysis of uranium salts. J Therm Anal Calorim 115, 2007–2020 (2014). https://doi.org/10.1007/s10973-013-3341-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3341-7

Keywords

Navigation