Skip to main content
Log in

Thermal stability of amine-functionalized MCM-41 in different atmospheres

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present work, we report on the thermal stability of NH2-MCM-41 hybrid material under different atmospheres (nitrogen and air). The thermal stability of this hybrid material is very important because of its common use in catalysis, adsorption, biomedical and biotechnological applications, based on mesoporous and aminopropyl functionalities. Samples were prepared by one pot co-condensation method with different loadings of 3-aminopropyltriethoxysilane (APTES). The thermal stability of hybrid samples (NH2-MCM-41) heat treated in nitrogen and air at 30–800 °C has been investigated. Samples were synthesized under basic media in the presence of cetyltrimethylammonium bromide (CTABr) as structure-directing agent, tetraethyl orthosilicate as silica source, and APTES as functionalizing agent with molar composition of 0.055 CTABr:045 SiO2:0.054 APTES:5.32 NH4OH:14.99 H2O at 50 °C for 24 h at pH 12.4. The obtained hybrid materials have been characterized by thermogravimetric analysis (TG), derivative thermogravimetric analysis, differential scanning calorimetry, X-ray powder diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, and surface area determination by the BET method. Based on TG measurements of the treated samples, it was found out that the thermal stability varied greatly in different atmospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992;359:710–2.

    Article  CAS  Google Scholar 

  2. Bore MT, Mokhonoana MP, Ward TL, Coville NJ, Datye AK. Synthesis and reactivity of gold nanoparticles supported on transition metal doped mesoporous silica. Microporous Mesoporous Materials. 2006;95:118–25.

    Article  CAS  Google Scholar 

  3. Byunghwan L, Zhen M, Zongtao Z, Chulhwan P, Sheng D. Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica host. Microporous Mesoporous Materials. 2009;122:160–7.

    Article  Google Scholar 

  4. Abolfazl J, Seyed AAM, Bahamin B, Amin M. Enhancement in thermal and hydrothermal stability of novel mesoporous MCM-41. J Porous Mater. 2012;19:979–88.

    Article  Google Scholar 

  5. Renata MB, Joana MFB, Duke MAM, Marcus AFM, Flavia de MA, de Julio Cezar O, Rodrigo CS. Kinetic study of template removal of MCM-41 derived from rice husk ash. J Therm Anal Calorim. 2013;111:1013–8.

    Article  Google Scholar 

  6. Hartmann M. Ordered mesoporous materials for bio-adsorption and biocatalysis. Chem Mater. 2005;17:4577–93.

    Article  CAS  Google Scholar 

  7. Wan Y, Zhao DY. On the controllable soft-templating approach to mesoporous silicates. Chem Rev. 2007;107:2821–60.

    Article  CAS  Google Scholar 

  8. Iliade P, Miletto I, Coluccia S, Berlier G. Functionalization of mesoporous MCM-41 with aminopropyl groups by co-condensation and grafting: a physico-chemical characterization. Res Chem Intermed. 2012;38:785–94.

    Article  CAS  Google Scholar 

  9. Parveen K, Vadim VG. Periodic mesoporous organic–inorganic hybrid materials: applications in membrane separations and adsorption. Microporous Mesoporous Materials. 2010;132:1–14.

    Article  Google Scholar 

  10. Haresh GM, Enrica G, Yasuhiro S, Osamu T, Salvatore C, Simonetta. Active biocatalysts based on pepsin immobilized in mesoporous SBA-15. J Phys Chem C. 2008;112:18110–6.

    Article  Google Scholar 

  11. Xueguang W, Yao-Hung T, Jerry CCC, Soofin C. Direct synthesis of highly ordered large-pore functionalized mesoporous SBA-15 silica with methylaminopropyl groups and its catalytic reactivity in flavanone synthesis. Microporous Mesoporous Materials. 2005;85:241–51.

    Article  Google Scholar 

  12. Wang X, Chen JCC, Tseng Y-H, Cheng S. Synthesis, characterization and catalytic activity of ordered SBA-15 materials containing high loadings of diamines functional groups. Microporous Mesoporous Materials. 2006;95:57–65.

    Article  CAS  Google Scholar 

  13. Wang Y, Zibrowins B, Yang C-M, Spliethoff B, Schuth F. Synthesis and characterization of large pore vinyl-functionalized mesoporous silica SBA-15. Chem Commun. 2004;46–7.

  14. Darragh G, Jakki C, Edmond M. Modification of mesoporous silicates for immobilization of enzymes. Top Catal. 2012;55:1101–6.

    Article  Google Scholar 

  15. Margandan B, Lee JY, Ramani A, Hyun TJ. Synthesis of chloropropylamine grafted mesoporous MCM-41, MCM-48 and SBA-15 from rice husk ash: their application to CO2 chemisorption. J Porous Mater. 2010;17:475–84.

    Article  Google Scholar 

  16. Raúl S, Guillermo C, Amaya A, Sanz-Pérez E. Amino functionalized mesostructured SBA-15 silica for CO2 capture: exploring the relation between the adsorption capacity and the distribution of aminogroups by TEM. Microporous Mesoporous Materials. 2012;158:309–17.

    Article  Google Scholar 

  17. Wei Q, Chen HQ, Nie ZR, Hao YL, Wang YL, Li QY, Zou JX. Preparation and characterization of vinyl-functionalized mesoporous SBA-15 by direct synthesis method. Mater Lett. 2007;61:1469–73.

    Article  CAS  Google Scholar 

  18. Fanpeng S, Shujie W, Jingqi G, Jianrui S, Heng L, Chunhua W, Qiubin K. A comparative study of aminopropyl-functionalized SBA-15 prepared by grafting in different solvents. Reac Kinet Mech Catal. 2011;103:181–90.

    Article  Google Scholar 

  19. Sujandi Eko AP, Sang-Eon P. Synthesis of short-channelled amino-functionalized SBA-15 and its beneficial applications in base-catalyzed reactions. Appl Catal A Gen. 2008;350:244–51.

    Article  Google Scholar 

  20. Soofin C, Xueguang W, Shih-Yuan C. Applications of amine-functionalized mesoporous silica in fine chemical synthesis. Top Catal. 2009;52:681–7.

    Article  Google Scholar 

  21. Parida KM, Mallick S, Sahoo PC, Rana SK. A facile method for synthesis of amine-functionalized mesoporous zirconia and its catalytic evaluation in Knoevenagel condensation. Appl Catal A Gen. 2010;381:226–32.

    Article  CAS  Google Scholar 

  22. Parida KM, Dharitri R. Amine functionalized MCM-41: an active and reusable catalyst for Knoevenagel condensation reaction. J Mol Catal A Chem. 2009;310:93–100.

    Article  CAS  Google Scholar 

  23. Kenneth SWS. Physisorption of nitrogen by porous materials. J Porous Mater. 1995;2:5–8.

    Article  Google Scholar 

  24. Chong ASM, Zhao XS. Functionalization of SBA-15 with APTES and characterization of functionalized materials. J Phys Chem B. 2003;107:12650.

    Article  CAS  Google Scholar 

  25. Molinari A, Maldotti A, Bratovcic A, Magnacca G. Fe(III)-porphyrin hetrogenized on MCM-41: matrix effects on the oxidation of 1,4-pentanedol. Catal Today. 2011;161:64–9.

    Article  CAS  Google Scholar 

  26. Xueguang W, Kyle S, Lin K, Jerry C, Chan C, Soofin C. Direct synthesis and catalytic applications of ordered large pore aminopropyl-functionalized SBA-15 mesoporous materials. J Phys Chem B. 2005;109:1763–9.

    Article  Google Scholar 

  27. Toshiyuki Y, Hideaki Y, Takashi T. Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes. J Mater Chem. 2004;14:951–7.

    Article  Google Scholar 

  28. Lin G, Jihong S, Yuzhen L. Functionalized bimodal mesoporoussilicas as carriers for controlled aspirin delivery. J Solid State Chem. 2011;184:1909–14.

    Article  Google Scholar 

  29. Luigi P, Flaviano T, Rosario A, Sante C, Janos BN. Preparation of bifunctional hybrid mesoporous silica potentially useful for drug targeting. Microporous Mesoporous Mater. 2007;103:166–73.

    Article  Google Scholar 

  30. El-Shekeil YA, Sapuan SM, Khalina A, Zainudin ES, Al-Shuja’a OM. Effect of alkali treatment on mechanical and thermal properties of Kenaffiber-reinforced thermoplastic polyurethane composite. J Therm Anal Calorim. 2012;109:1435–43.

    Article  CAS  Google Scholar 

  31. Kim HS, Yang HS, Kim HJ, Park HJ. Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites. J Therm Anal Calorim. 2004;76:395–404.

    Article  CAS  Google Scholar 

  32. Tongge L, Gang L, Zhang N, Yongying C. An inorganic–organic hybrid optical sensor for heavy metal ion detection based on immobilizing 4-(2-pyridylazo)-resorcinol on functionalized HMS. J Hazard Mater. 2012;201–202:155–61.

    Google Scholar 

  33. Zhao XS, Lu GQ, Whittaker AK, Millar GJ, Zhu HY. Comprehensive study of surface chemistry of MCM-41 using 29SiCP/MAS NMR, FTIR, pyridine-TPD and TGA. J Phys Chem B. 1997;101:6525–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the Research Centre for Synthesis and Catalysis of the University of Johannesburg; South African National Research Foundation (NRF). Thanks to Mr D. Harris and Dr R. Meyer (Shimadzu South Africa) for the use of their equipment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ajay K. Mishra or Reinout Meijboom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vunain, E., Opembe, N.N., Jalama, K. et al. Thermal stability of amine-functionalized MCM-41 in different atmospheres. J Therm Anal Calorim 115, 1487–1496 (2014). https://doi.org/10.1007/s10973-013-3350-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3350-6

Keywords

Navigation