Skip to main content
Log in

Thermal decomposition of tetraethyl ammonium tetrafluoroborate

A simultaneous TG–DTG–DSC–quadrupole mass spectrometric approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition of tetraethyl ammonium tetrafluoroborate has been studied employing simultaneous techniques of TG–DTG–DSC—quadrupole mass spectrometric techniques in an inert atmosphere of pure Helium gas at a sample heating rate of 5 K min−1 employing a platinum crucible. The observed decomposition paths are the most commonly expected Hofmann elimination and substitution reactions paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Flanigen EM. A comprehensive review article concerning both high- silica zeolites and silica molecular sieves. Proceedings of international conference on Zeolites, 5th, Heyden, London; 1980. p. 760–780.

  2. Kerr GT. Zeolite ZK-5: a new molecular sieve. Science. 1963;140:1412.

    Article  CAS  Google Scholar 

  3. Acara NA. Aluminosilicates of zeolite n structure. US Patent 3,414,602; 1968.

  4. Rubin MK, Rosinski, EJ, Plank CJ. Crystalline zeolite ZSM-34 and method of preparing the same. US Patent 4,086,186; 1978.

  5. See EG. Gmelin Handbook, 8th Edn. Boron compounds. 2nd Supplement. 1982;2:53–6.

  6. Sergey S, Pauls JR, Nunes SP, Peinemann KV. Quaternary ammonium membrane materials for CO2 separation. J Membr Sci. 2010;359:44–53.

    Article  Google Scholar 

  7. Krásensky S, Studnicková M. Electro synthesis of organic amalgam from tetraethyl ammonium tetrafluoroborate in aqueous medium. Collect Czech Chem Commune. 1994;59:2375–82.

    Article  Google Scholar 

  8. Prasad MRR, Krishnan K, Ninan KN, Krishnamurthy VN. Thermal decomposition of tetraalkyl ammonium tetrafluoroborates. Thermochim Acta. 1997;297:207–10.

    Article  CAS  Google Scholar 

  9. Yanes EG, Gratz SR, Stalcup AM. Tetraethyl ammonium tetrafluoroborate: a novel electrolyte with a unique role in the capillary electrophoretic separation of polyphenols found in grape seed extracts. Analyst. 2000;125:1919–23.

    Article  CAS  Google Scholar 

  10. Pieniazek PA, Stangret J. Hydration of TEATFB in aqueous solutions by means of FTIR spectroscopy. Vib Spectrosc. 2005;39:81–7.

    Article  CAS  Google Scholar 

  11. Kurzweil P, Chwisteka M. Electrochemical stability of organic electrolytes in supercapacitors: spectroscopy and gas analysis of decomposition products. J Power Sour. 2008;176:555–67.

    Article  CAS  Google Scholar 

  12. Giuseppetti G, Tadini C, Ferloni P, Zabinska G, Torre S. The crystal structure of tetraethyl ammonium tetrafluoroborate (C2H5)4NBF4. Z Kristallogr. 1994;209:509–11.

    Article  CAS  Google Scholar 

  13. Subramaniam K. A review of electrosynthesis of polysilanes. J Macromol Sci-Rev Macromol Chem Phys. 1998;C38:637–50.

    Article  Google Scholar 

  14. Vijayanathan V, Venkatachalam S, Krishnamurthy VN. Effect of supporting electrolytes and cathode materials on the electropolymerization of acrylonitrile with methacrylic acid. Eur Polym J. 1993;29:1373–7.

    Article  CAS  Google Scholar 

  15. Marcus Y. Tetraalkylammonium ions in aqueous and non-aqueous solutions. J Solut Chem. 2008;37:1071–98.

    Article  CAS  Google Scholar 

  16. Choi JW, McDonough J, Jeong S, Yoo JS, Chan CK, Cui Y. Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett. 2010;10:1409–11.

    Article  CAS  Google Scholar 

  17. Gao W, Singh N, Song L, Liu Z, Reddy ALM, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan PM. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat Nanotechnol. 2011;6(8):496–500. doi:10.1038/NNANO.2011.110.

    Article  CAS  Google Scholar 

  18. Chunhong L, Peter W, Constantina L. Effect of poly(3,4-ethylenedioxythiophene) (PEDOT) in carbon-based composite electrodes for electrochemical supercapacitors. Thesis submitted in Division of Mechanical, Medical and Aerospace Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2, 7XH, UK; 2011.

  19. Brandon EJ, Smart MC, West WC. Low temperature double-layer capacitors. US Patent No. 8081418 (B2/20/2011); 2011.

  20. Yue B, Wang C, Wagner P, Yang Y, Ding X, Officer DL, Wallace GG. Electrodeposition of pyrrole and 3-(4-tertbutylphenyl)thiophene copolymer for supercapacitor applications. Synth Met. 2012;162:2216–21.

    Article  CAS  Google Scholar 

  21. Wang H, Pilon L. Physical interpretation of cyclic voltammetry for measuring electric double layer capacitance. Electrochim Acta. 2012;64:130–9.

    Article  CAS  Google Scholar 

  22. Kim B, Chung H, Kim W. High-performance super capacitors based on vertically aligned carbon nanotubes and nonaqueous electrolytes. Nanotechnology. 2012;23:155401–1554409.

    Article  Google Scholar 

  23. Wu ZS, Zhou G, Yin LC, Ren W, Li F, Cheng HM. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy. 2012;1:107–13.

    Article  CAS  Google Scholar 

  24. Gu W, Peters N, Yushin G. Sulfur-containing activated carbons with greatly reduced content of bottle neck pores for double-layer capacitors: a case study for pseudocapacitance detection. Carbon. 2013;53:292–301.

    Article  CAS  Google Scholar 

  25. Zhang L, Cndelaria SL, Tian J, Li Y, Huang YX, Cao G. Copper nanocrystal modified activated carbon for supercapacitors with enhanced volumetric energy and power density. J Power Sour. 2013;236:215–23.

    Article  CAS  Google Scholar 

  26. Tyunina EY, Chekunova MD, Afanasiev VN. Electrochemical characteristics of propylene carbonate solutions of tetraethylammonium tetrafluoroborate. Russ J Electrochem. 2013;49:453–7.

    Article  CAS  Google Scholar 

  27. Pech D, Brunet M, Durou H, Huang P, Mochalin V, Gogotsi Y, Taberna PL, Simon P. Ulrahigh-power micrometer-sized supercapacitors based on onion-like carbon. Nat Nanotechnol. 2010;5:651–4.

    Article  CAS  Google Scholar 

  28. Torop J, Arulepp M, Leis J, Punning A, Johanson U, Palmre V, Aabloo A. Nanoporous carbide-derived carbon material-based linear actuators. Materials. 2010;3:9–25.

    Article  CAS  Google Scholar 

  29. Udupa MR. Thermal decomposition of tetraethyl ammonium per chlorate. Propellants Explos Pyrotech. 1982;7:155–7.

    Article  CAS  Google Scholar 

  30. Haskins NJ, Mitchell R. Thermal degradation of some benzyltrialkylammonium salts using pyrolysis-gas chromatography-mass spectrometry. Analyst. 1991;116:901–3.

    Article  CAS  Google Scholar 

  31. Ollis WD, Rey M, Sutherland IO. Base catalyzed rearrangements involving ylide intermediates. Part 15. The mechanism of the Stevens [1, 2] rearrangement. J Chem Soc Perkin Trans. 1983;1:1009–27.

    Article  Google Scholar 

  32. Morrison RT, Boyd RN. Organic chemistry. 4th ed. London: Allyn and Bacon; 1983. p. 30.

    Google Scholar 

  33. Zabinska G, Ferloni P, Sanesi M. On the thermal behavior of some tetraalkyl ammonium tetrafluoroborates. Thermochim Acta. 1987;122:87–94.

    Article  CAS  Google Scholar 

  34. Schultz TM. Ph. D. thesis, two and three dimensional systems studied using x-ray crystallographic techniques, Chap. 3, Aarhus University, Denmark; 1998.

  35. Wheeler CM Jr, Sandstedt RA. Reaction of dimethyl ether-boron trifluoride with quaternary alkyl ammonium halides. J Am Chem Soc. 1955;77:2024–5.

    Article  CAS  Google Scholar 

  36. Kobler H, Munz R, Gasser AG, Simchen G. A simple synthesis of functional anions with tetraalkylammonium. Liebigs Ann Chem. 1978; 1937–1945.

  37. Gordon JE. Fused organic salts. III. Chemical stability of molten tetra-n-alkylammonium salts. Medium effects on thermal R4N+X decomposition. RBr+I = RI+Br equilibrium constant in fused salt medium. J Org Chem. 1965;30:2760–3.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. M. R. R. Prasad would like to express his sincere thanks to M/s. Netzsch-Geratebau Germany for extending their instrumental facility support in carrying out this research work. He also would like to express his sincere thanks to Dr. B. Sreedhar, Principal Scientist, IICT, Hyderabad in extending his valuable support by participating in the technical discussion on this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. R. Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, M.R.R., Sudhakarbabu, K. Thermal decomposition of tetraethyl ammonium tetrafluoroborate. J Therm Anal Calorim 115, 1901–1905 (2014). https://doi.org/10.1007/s10973-013-3378-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3378-7

Keywords

Navigation