Skip to main content
Log in

Thermal stability of styrene butadiene rubber (SBR) composites filled with kaolinite/silica hybrid filler

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Styrene butadiene rubber (SBR) composites filled with fillers, such as modified kaolinite (MK), precipitated silica (PS), and the hybrid fillers containing MK and PS, were prepared by melt blending. The kaolinite sheets were finely dispersed in the SBR matrix around 20–80 nm in thickness and reached the nano-scale. The SBR composites with fillers exhibited excellent thermal stability compared to the pure SBR. The thermal stability of SBR composites was improved with the increasing of MK mass fraction. When MK hybridized with PS, kaolinite sheets were covered by the fine silica particles and the interface between filler particles and rubber matrix became more indistinct. SBR composite filled by hybrid fillers containing 40 phr MK and 10 phr PS became more difficult in decomposition and was better than that of 50 phr PS/SBR and 50 phr MK/SBR in thermal stability. Therefore, the hybridization of the fine silica particles with the kaolinite particles can effectively improve the thermal stability of SBR composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R. 2000;28:1–63.

    Article  Google Scholar 

  2. Jana SC, Jain S. Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids. Polymer. 2001;42:6897–905.

    Article  CAS  Google Scholar 

  3. Frost RL, Lack DA, Paroz GN, Tran THT. New techniques for studying the intercalation of kaolinites from Georgia with formamide. Clays Clay Miner. 1999;47:297–303.

    Article  CAS  Google Scholar 

  4. Malas A, Das CK, Das A, Heinrich G. Development of expanded graphite filled natural rubber vulcanizates in presence and absence of carbon black: mechanical, thermal and morphological properties. Mater Des. 2012;39:410–7.

    Article  CAS  Google Scholar 

  5. Pavlidou S, Papaspyrides CD. A review on polymer-layered silicate nanocomposites. Prog Polym Sci. 2008;33:1119–98.

    Article  CAS  Google Scholar 

  6. Agnieszka L, Krzysztof P. Application of thermal analysis methods for characterization of polymer/montmorillonite nanocomposites. J Therm Anal Calorim. 2008;93:677–87.

    Article  Google Scholar 

  7. Mohamed RM. Radiation induced modification of NBR and SBR montmorillonite nanocomposites. J Ind Eng Chem. 2013;19:80–6.

    Article  CAS  Google Scholar 

  8. Lagaly G. Introduction: from clay mineral–polymer interactions to clay mineral–polymer nanocomposities. Appl Clay Sci. 1999;15:1–9.

    Article  CAS  Google Scholar 

  9. Choudalakis G, Gotsis AD. Permeability of polymer/clay nanocomposites: a review. Eur Polym J. 2009;45:967–84.

    Article  CAS  Google Scholar 

  10. Zeng K, Bai YP. Improve the gas barrier property of PET film with montmorillonite by in situ interlayer polymerization. Mater Lett. 2005;59:3348–51.

    Article  Google Scholar 

  11. Bourbigot S, Gilman JW, Wilkie CA. Kinetic analysis of the thermal degradation of polystyrene-montmorillonite nanocomposite. Polym Degrad Stab. 2004;84:483–92.

    Article  CAS  Google Scholar 

  12. Liu QF, Zhang YD, Xu HL. Properties of vulcanized rubber nanocomposites filled with nanokaolin and precipitated silica. Appl Clay Sci. 2008;42:232–7.

    Article  CAS  Google Scholar 

  13. Lu YL, Li Z, Yu ZZ, Tian M, Zhang LQ, Mai YW. Microstructure and properties of highly filled rubber/clay nanocomposites prepared by melt blending. Compos Sci Technol. 2007;67:2903–13.

    Article  CAS  Google Scholar 

  14. Rattanasom N, Saowapark T, Deeprasertkul C. Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test. 2007;26:369–77.

    Article  CAS  Google Scholar 

  15. Yahaya LE, Adebowale KO, Menon ARR. Mechanical properties of organomodified kaolin/natural rubber vulcanizates. Appl Clay Sci. 2009;46:283–8.

    Article  CAS  Google Scholar 

  16. Saengsuwan S, Saikrasun S. Thermal stability of styrene-(ethylene butylene)-styrene-based elastomer composites modified by liquid crystalline polymer, clay, and carbon nanotube. J Therm Anal Calorim. 2012;110:1395–406.

    Article  CAS  Google Scholar 

  17. Bergaya F, Lagaly G. General introduction: clays, clay minerals, and clay science. In: Bergaya F, Theng BKG, Lagaly G, editors. Handbook of Clay Science. Amsterdam: Elsevier Ltd; 2006. p. 1–18.

    Chapter  Google Scholar 

  18. Shi D, Yu W, Li RKY, Ke Z, Yin JH. An investigation on the dispersion of montmorillonite (MMT) primary particles in PP matrix. Eur Polym J. 2007;43:3250–7.

    Article  CAS  Google Scholar 

  19. Mohan TP, Kuriakose J, Kanny K. Effect of nanoclay reinforcement on structure, thermal and mechanical properties of natural rubber–styrene butadine rubber (NR–SBR). J Ind Eng Chem. 2011;17:410–7.

    Article  Google Scholar 

  20. Przemysław R, Grazyna J, Małgorzata J, Agnieszka P. Thermal stability and flammability of butadiene-styrene rubber nanocomposites. J Therm Anal Calorim. 2012;109:561–71.

    Article  Google Scholar 

  21. Stephen R, Ranganathaiah C, Varghese S, Joseph K, Thomas S. Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer. 2006;47:858–70.

    Article  CAS  Google Scholar 

  22. Takahashi S, Goldberg HA, Feeney CA, Karim DP, Farrell M, O’Leary K, Paul DR. Gas barrier properties of butyl rubber/vermiculite nanocomposite coatings. Polymer. 2006;47:3083–93.

    Article  CAS  Google Scholar 

  23. Chen SG, Yu HY, Ren WT, Zhang Y. Thermal degradation behavior of hydrogenated nitrile-butadiene rubber (HNBR)/clay nanocomposite and HNBR/clay/carbon nanotubes nanocomposites. Thermochim Acta. 2009;491:103–8.

    Article  CAS  Google Scholar 

  24. Liang YR, Cao WL, Li Z, Wang YQ, Wu YP, Zhang LQ. A new strategy to improve the gas barrier property of isobutylene-isoprene rubber/clay nanocomposites. Polym Test. 2008;27:270–6.

    Article  CAS  Google Scholar 

  25. Ponomarenko AT, Klason C, Kazantseva NE, Buzin MI, Alexandre M, Dubois P, Tchmutin IA, Shevchenko VG, Jérôme R. Thermogravimetry as a method for investigating the thermal stability of polymer composites. J Therm Anal Calorim. 1999;55:537–49.

    Article  CAS  Google Scholar 

  26. Alberto L, Sergio L, Rodolfo B, Paolo C, Fabrizio D, Dario TB. A rheological method for selecting nano-kaolin powder as filler in SBR rubber. Particuology. 2010;8:245–50.

    Article  Google Scholar 

  27. Yanlong T, Jiasheng Q, Jibin M, Ru X, Yuchuan Z, Zhenguo Y. Preparation and characterization of Si3N4/SBR nanocomposites with high performance. Mater Des. 2012;34:522–7.

    Article  Google Scholar 

  28. Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci. 2003;28:1539–641.

    Article  Google Scholar 

  29. Zhang YD, Liu QF, Zhang Q, Lu YP. Gas barrier properties of natural rubber/kaolin composites prepared by melt blending. Appl Clay Sci. 2010;50:255–9.

    Article  CAS  Google Scholar 

  30. Haydn HM. Overview-clay mineral applications. Appl Clay Sci. 1991;5:379–95.

    Article  Google Scholar 

  31. Caglar B, Çırak Ç, Tabak A, Afsin B, Eren E. Covalent grafting of pyridine-2-methanol into kaolinite layers. J Mol Struct. 2013;1032:12–22.

    Google Scholar 

  32. Hongyan W, Chunshan L, Zhijian P, Zhang S. Characterization and thermal behavior of kaolin. J Therm Anal Calorim. 2011;105:157–60.

    Article  Google Scholar 

  33. Cheng H, Liu Q, Yang J, Zhang Q, Frost RL. Thermal behavior and decomposition of kaolinite–potassium acetate intercalation composite. Thermochim Acta. 2010;503–504:16–20.

    Article  Google Scholar 

  34. Grazyna J, Agnieszka K, Przemysław R. Thermal stability, flammability and fire hazard of butadiene-acrylonitrile rubber nanocomposites. J Therm Anal Calorim. 2011;103:1039–46.

    Article  Google Scholar 

  35. Xu B, Zheng Q, Song YH, Shangguan Y. Calculating barrier properties of polymer/clay nanocomposites: effects of clay layers. Polymer. 2006;47:2904–10.

    Article  CAS  Google Scholar 

  36. Anastasiadis SH, Chrissopoulou K, Frick B. Structure and dynamics in polymer/layered silicate nanocomposites. Mater Sci Eng B. 2008;152:33–9.

    Article  CAS  Google Scholar 

  37. Gilman JW. Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci. 1999;15:31–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical support of Beijing Research and Design Institute of Rubber Industry, and the financial support provided by the National Natural Science Foundation Project of China (51034006), the Opening Project of Henan Key Discipline Open Laboratory of Mining Engineering Materials (MEM11-2), and the Ph.D. programs foundation of Henan Polytechnic University (648273) in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yude Zhang or Ray L. Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Zhang, Q., Liu, Q. et al. Thermal stability of styrene butadiene rubber (SBR) composites filled with kaolinite/silica hybrid filler. J Therm Anal Calorim 115, 1013–1020 (2014). https://doi.org/10.1007/s10973-013-3382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3382-y

Keywords

Navigation