Skip to main content
Log in

Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A comparative evaluation of different biomasses allows the choice that presents the best potential as fuel for energy production. The knowledge of the thermal and kinetics parameters of the biomass in the process of thermal conversion is fundamental as their chemical and physical characterization. Various methodologies have been developed for the determination of kinetic parameters as apparent activation energy and reaction order from the thermogravimetric analysis. In this work, the apparent activation energy needed to break the bonds of hemicelluloses and cellulose of rice husk and elephant grass during the thermal conversion was evaluated according to the kinetics models of Flynn and Wall and Model Free Kinetics developed by Vyazovkin. The biomass elephant grass and rice husk were characterized for moisture, ash and volatile matter by ASTM E871, ASTM E1755, ASTM E872, respectively, and fixed carbon by difference. The percentage of carbon, hydrogen, nitrogen, and oxygen were determined by ultimate analysis. The elephant grass showed to be more suitable for production of bio-oil through pyrolysis due to the higher percentage of volatile, less ash content and less energy required to break the bonds of hemicellulose and cellulose than rice husk in the thermal conversion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ilmam T, Capareda S. Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J Anal Appl Pyrol. 2012;93:170–7.

    Article  Google Scholar 

  2. Wang S, Jiang XM, Wang Q, Ji HS, Wu LF, Wang JF, Xu SN. Research of specific heat capacities of three large seaweed biomass. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3141-0.

    Google Scholar 

  3. López R, Fernández C, Gómez X, Martínez O, Sánchez ME. Thermogravimetric analysis of lignocellulosic and microalgae biomasses and their blends during combustion. J Therm Anal Calorim. 2013. doi:10.1007/s10973-012-2843-z.

    Google Scholar 

  4. Omar S, Cortez LAB, Gómez EO. Estudo cinético da biomassa a partir de resultados termogravimétricos. In: An. 3. Enc. Energ. Meio Rural 2003. http://www.proceedings.scielo.br/scielo.php?pid=MSC0000000022000000200022&script=sci_arttext. Accessed 04 Sept 2013.

  5. Cortez LAB, Lora EES, Gómez EO. Biomassa para energia. São Paulo: Ed. da Unicamp; 2008.

    Google Scholar 

  6. Mothé CG, Miranda IC. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa–Flynn–Wall isoconversional methods. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3163-7.

    Google Scholar 

  7. Koga N. Ozawa’s kinetic method for analyzing thermoanalytical curves. J Therm Anal Calorim. 2013. doi:10.1007/s10973-012-2882-5.

    Google Scholar 

  8. Macedo CP, Negrão CAB, Macedo LGM, Zamian JR, Rocha Filho GN, Costa CEF. Kinetic study of template removal of Al-MCM-41 synthesized at room temperature. J Therm Anal Calorim. 2013. doi:10.1007/s10973-013-3267-0.

  9. González JF, Encinar JM, Canito JL, Sábio E, Chacón M. Pyrolysis of cherry stones: energy use of the different fractions and kinetic study. J Anal Appl Pyrolysis. 2003;57:65–190.

    Google Scholar 

  10. Mui ELK, Cheung WH, Lee VKC, McKay G. Kinetic study on bamboo pyrolysis. Ind Eng Chem Res. 2008;47:5710–22.

    Article  CAS  Google Scholar 

  11. Zhao H, Yan HX, Dong SS, Zhang Y, Sun BB, Zhang CW, Ai YX, Chen BQ, Liu Q, Sui TT, Qin S. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue. J Therm Anal Calorim. 2013;111:1685–90.

    Article  CAS  Google Scholar 

  12. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  13. Braga RM, Barros JMF, Melo DMA, Melo MAF, Aquino FM, Freitas JCO, Santiago RC. Kinetic study of template removal of MCM-41 derived from rice husk ash. J Therm Anal Calorim. 2013;111:1013–8.

    Article  CAS  Google Scholar 

  14. Zain MFM, Islam MN, Jamil M. Production of rice husk ash for use in concrete as a supplementary cementitious material. Constr Build Mater. 2011;25:798–805.

    Article  Google Scholar 

  15. He J, Jie Y, Zhang J, Zhang G. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Compos. 2013;37:108–18.

    Article  CAS  Google Scholar 

  16. Guozhan J, Nowakowski DJ, Bridgwater AV. A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta. 2010;498:61–6.

    Article  Google Scholar 

  17. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1962;5:285–92.

    Article  Google Scholar 

  18. Aquino FM, Melo D MA, Santiago RC, Melo MAF, Martinelli AE, Freitas JCO, Araú jo LCB. Thermal decomposition kinetics of PrMO3 (M = Ni or Co) ceramic materials via thermogravimetry. J Therm Anal Calorim. 2011;104:701–5.

    Google Scholar 

  19. Vyazovkin S. A unified approach to kinetic processing of nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  20. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

  21. Souza MJB, Araujo AS, Pedrosa AMG, Lima SH, Fernande VJ Jr. Kinetic parameters of surfactant remotion occluded in the pores of the AlMCM-41 nanostructured materials. Thermochim Acta. 2006;443:183–8.

    Article  CAS  Google Scholar 

  22. French R, Czernik S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process Technol. 2010;91:25–32.

    Article  CAS  Google Scholar 

  23. Shi L, Yu S, Wang FC, Wang J. Pyrolytic characteristics of rice straw and its constituents catalyzed by internal alkali and alkali earth metal. Fuel. 2012;96:586–94.

    Article  CAS  Google Scholar 

  24. Teixeira P, Lopes H, Gulyurtlu I, Lapa N. Use of chemical fractionation to understand partitioning of biomass ash constituents during co-firing in fluidized bed combustion. Fuel. 2012;101:215–27.

    Article  CAS  Google Scholar 

  25. Sarenbo S. Wood ash dilemma-reduced quality due poor combustion performance. Biomass Bioenergy. 2009;9:1212–20.

    Article  Google Scholar 

  26. McKendry P. Energy production from biomass (part 1): overview of biomass. Bioresour Technol. 2002;83:37–46.

    Article  CAS  Google Scholar 

  27. Mayer Z, Apfelbacher A, Hornung A. Effect of sample preparation on the thermal degradation of metal-added biomass. J Anal Appl Pyrol. 2012;94:170–6.

    Article  CAS  Google Scholar 

  28. Sait HH, Hussain A, Salema AA, An FN. Pyrolysis and combustion kinetics of date palm biomass using thermogravimetric analysis. Bioresour Technol. 2012;118:382–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnologico) for financial support, LabTam – NUPPRAR for the TG analysis and Central Analítica – NUPPRAR for the Ultimate Analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata M. Braga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braga, R.M., Melo, D.M.A., Aquino, F.M. et al. Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim 115, 1915–1920 (2014). https://doi.org/10.1007/s10973-013-3503-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3503-7

Keywords

Navigation