Skip to main content
Log in

Phase behavior of dodecane–hexadecane mixtures in bulk and confined in SBA-15

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Phase behaviors of dodecane–hexadecane (n-C12H26–C16H34, C12–C16) binary mixtures in bulk and confined in SBA-15 (pore diameters 3.8, 9.5, and 17.2 nm) are investigated using differential scanning calorimetry. According to the thermal analysis, the bulk mixtures belong to a system of partial miscibility with two solid solutions and a eutectoid in the range of mole fraction \( x_{{{\text{C}}_{ 1 6} }} \) = 0.1–0.8. Under confinement, phase behavior of C12–C16 mixtures is distinct from the bulk. Inside pores of SBA-15 (3.8 nm), the solid mixtures has only a melting boundary. In the pores larger than 9.5 nm, phase behaviors of the mixtures show some resemblance to the bulk system. The growth of the phase diagram with the pore diameter clearly shows the size effect on the phase behavior of the confined mixtures. In comparison with those of chain length difference of pure components of two carbon atoms or less, C12–C16 mixtures exhibit different phase behaviors not only in the bulk but also in the confined state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Czwartos J, Śliwińska-Bartkowiak M, Coasne B, Gubbins KE. Melting of mixtures in silica nanopores. Pure Appl Chem. 2009;81:1953–9.

    Article  CAS  Google Scholar 

  2. Buffat P, Borel JP. Size effect on the melting temperature of gold particles. Phys Rev A. 1976;13:2287–98.

    Article  CAS  Google Scholar 

  3. Majda D, Makowski W, Mańko M. Pore size distribution of micelle-templated silicas studied by thermoporosimetry using water and n-heptane. J Therm Anal Calorim. 2012;109:663–9.

    Article  CAS  Google Scholar 

  4. Alba-Simionesco C, Coasne B, Dosseh G, Dudziak G, Gubbins KE, Radhakrishnan R, et al. Effects of confinement on freezing and melting. J Phys: Condens Matter. 2006;18:R15–68.

    CAS  Google Scholar 

  5. Majda D, Makowski W. Studies on the equilibrated thermodesorption of n-hexane from ZSM-5 zeolite. J Therm Anal Calorim. 2010;101:519–26.

    Article  CAS  Google Scholar 

  6. Koh YP, Li Q, Simon SL. Tg and reactivity at the nanoscale. Thermochim Acta. 2009;492:45–50.

    Article  CAS  Google Scholar 

  7. Zhao H, Simon SL. Methyl methacrylate polymerization in nanoporous confinement. Polymer. 2011;52:4093–8.

    Article  CAS  Google Scholar 

  8. Xu B, Di X, McKenna G. Melting of pentaerythritol tetranitrate nanoconfined in controlled pore glasses. J Therm Anal Calorim. 2013;113:533–7.

    Article  CAS  Google Scholar 

  9. Morishige K, Yasunaga H, Matsutani Y. Effect of pore shape on freezing and melting temperatures of water. J Phys Chem C. 2010;114:4028–35.

    Article  CAS  Google Scholar 

  10. Schreiber A, Ketelsen I, Findenegg GH. Melting and freezing of water in ordered mesoporous silica materials. Phys Chem Chem Phys. 2001;3:1185–95.

    Article  CAS  Google Scholar 

  11. Long Y, Śliwińska-Bartkowiak M, Drozdowski H, Kempiński M, Phillips KA, Palmer JC, et al. High pressure effect in nanoporous carbon materials: effects of pore geometry. Colloids Surf A. 2013;437(20):33–41.

    Google Scholar 

  12. Coasne B. Freezing of mixtures confined in a slit nanopore. Adsorption. 2005;11:301–6.

    Article  Google Scholar 

  13. Coasne B, Czwartos J, Śliwińska-Bartkowiak M, Gubbins KE. Effect of pressure on the freezing of pure fluids and mixtures confined in nanopores. J Phys Chem B. 2009;113:13874–81.

    Article  CAS  Google Scholar 

  14. Morishige K, Yasunaga H, Matsutani Y. Effect of pore shape on freezing and melting temperatures of water. J Phys Chem C. 2010;114:4028–35.

    Article  CAS  Google Scholar 

  15. Amanuel S, Bauer H, Bonventre P, Lasher D. Nonfreezing interfacial layers of cyclohexane in nanoporous silica. J Phys Chem C. 2009;113:18983–6.

    Article  CAS  Google Scholar 

  16. Śliwińska-Bartkowiak M, Dudziak G, Gras R, Sikorski R, Radhakrishnan R, Gubbins KE. Freezing behavior in porous glasses and MCM-41. Colloids Surf A. 2001;187–188:523–9.

    Article  Google Scholar 

  17. Sonwane CG, Bhatia SK. Adsorption in mesopores: a molecular-continuum model with application to MCM-41. Chem Eng Sci. 1998;53:3143–56.

    Article  CAS  Google Scholar 

  18. Lan XZ, Pei HR, Cheng CX. Phase behavior of binary system of bromobenzene–chlorobenzene confined in SBA-15 and MCM-41. Chin Chem Lett. 2011;22:1497–500.

    Article  CAS  Google Scholar 

  19. Huber P, Wallacher D, Albers J, Knorr K. Quenching of lamellar ordering in an n-alkane embedded in nanopores. Europhys Lett. 2007;65:351–7.

    Article  CAS  Google Scholar 

  20. Huber P, Soprunyuk VP, Knorr K. Structural transformations of even-numbered n-alkanes confined in mesopores. Phys Rev E. 2006;74:1–5.

    Article  CAS  Google Scholar 

  21. Aristov YI, Marco GD, Tokarev MM, Parmon VN. Selective water sorbents for multiple applications, CaCl2 solution confined in micro and mesoporous silica gels: pore size effect on the “solidification-melting” diagram. React Kinet Catal Lett. 1997;61:147–54.

    Article  CAS  Google Scholar 

  22. Pei HR, Yan X, Lan XZ. Unusual phase behavior of decane–dodecane mixtures confined in SBA-15: size effect on binary phase diagram. Chin Chem Lett. 2012;23:1173–6.

    Article  CAS  Google Scholar 

  23. Yan X, Wang TB, Pei HR, Wang LP, Lan XZ. Phase behavior of dodecane–tridecane mixtures confined in SBA-15. J Therm Anal Calorim. 2013;113:1297–302.

    Article  CAS  Google Scholar 

  24. Yan X, Pei HR, Wang TB, Liu WB, Lan XZ. Phase behavior of undecane–dodecane mixtures confined in SBA-15. J Chem. 2013;2013:1–7.

    Article  CAS  Google Scholar 

  25. Lan XZ, Pei HR, Yan X, Liu WB. Phase behavior of dodecane–tetradecane binary system confined in SBA-15. J Therm Anal Calorim. 2012;110:1437–42.

    Article  CAS  Google Scholar 

  26. Pei HR, Yan X, Liu WB, Lan XZ. Phase behavior of tetradecane–hexadecane mixtures confined in SBA-15. J Therm Anal Calorim. 2013;112:961–7.

    Article  CAS  Google Scholar 

  27. Turner WR. Normal alkanes. Ind Eng Chem Prod Res Dev. 1971;10:238–60.

    Article  CAS  Google Scholar 

  28. Rajabalee F, Métivaud V, Mondieig D, Haget Y. New insights on the crystalline forms in binary systems of n-alkanes: characterization of the solid ordered phases in the phase diagram tricosane + pentacosane. J Mater Res. 1999;14:2644–54.

    Article  CAS  Google Scholar 

  29. Dirand M, Bouroukba M, Chevallier V, Petitjean D, Behar E, Ruffier-Meray V. Normal alkanes, multialkane synthetic model mixtures, and real petroleum waxes: crystallographic structures, thermodynamic properties, and crystallization. J Chem Eng Data. 2002;47:115–43.

    Article  CAS  Google Scholar 

  30. Sirota EB, Singer DM. Phase transitions among the rotator phases of the normal alkanes. J Chem Phys. 1994;101:10873–82.

    Article  CAS  Google Scholar 

  31. Martínez Casado FJ, Ramos Riesco M, Redondo Yélamos MI, Sánchez Arenas A, Rodríguez Cheda JA. The role of calorimetry in the structural study of mesophases and their glass states. J Therm Anal Calorim. 2012;108:399–413.

    Article  CAS  Google Scholar 

  32. Agafonov IA, Garkushin IK, Miftakhov TT. Regularities of changes in phase diagrams of n-alkane binary system series. Zh Fiz Khim. 1999;73:783–7.

    CAS  Google Scholar 

  33. Cao L, Kruk M. Facile method to synthesize platelet SBA-15 silica with highly ordered large mesopores. J Colloid Interface Sci. 2011;361:472–6.

    Article  CAS  Google Scholar 

  34. Dunne LJ, Manos G. Adsorption and phase behaviour in nanochannels and nanotubes. Dordrecht: Springer; 2009.

    Google Scholar 

  35. Koh YP, Simon SL. Crystallization and vitrification of a cyanurate trimer in nanopores. J Phys Chem B. 2012;116(26):7754–61.

    Article  CAS  Google Scholar 

  36. Koh YP, Simon SL. Kinetic study of trimerization of monocyanate ester in nanopores. J Phys Chem B. 2011;115(5):925–32.

    Article  CAS  Google Scholar 

  37. Shin K, Woo E, Jeong YG, Kim C, Huh J, Kim K. Crystalline structures, melting, and crystallization of linear polyethylene in cylindrical nanopores. Macromolecules. 2007;40(18):6617–23.

    Article  CAS  Google Scholar 

  38. Calvet T, Tauler E, Cuevas-Diarte MA, Housty JR, Mondieig D, Haget Y, et al. Application of the “shape-factors method” to purity analysis of compounds by thermal methods. Thermochim Acta. 1992;204:271–80.

    Article  CAS  Google Scholar 

  39. Mnyukh YV. The structure of normal paraffins and of their solid solutions. J Struct Chem. 1960;1:346–65.

    Article  Google Scholar 

  40. Mondieig D, Rajabalee F, Metivaud V. n-Alkane binary molecular alloys. Chem Mater. 2004;16:786–98.

    Article  CAS  Google Scholar 

  41. Yan X, Wang TB, Gao CF, Lan XZ. Mesoscopic phase behavior of tridecane–tetradecane mixtures confined in porous materials: effects of pore size and pore geometry. J Phys Chem C. 2013;117:17245–55.

    Article  CAS  Google Scholar 

  42. Clavell-Grunbaum D, Strauss HL, Snyder RG. Structure of model waxes: conformational disorder and chain packing in crystalline multicomponent n-alkane solid solutions. J Phys Chem B. 1997;101:335–43.

    Article  CAS  Google Scholar 

  43. Dorset DL. Chain length and the cosolubility of n-paraffins in the solid state. Macromolecules. 1990;23:623–33.

    Article  CAS  Google Scholar 

  44. Dorset DL. Crystal structure of lamellar paraffin eutectics. Macromolecules. 1986;19:2965–73.

    Article  CAS  Google Scholar 

  45. Henschel A, Hofmann T, Huber P, Knorr K. Preferred orientations and stability of medium length n-alkanes solidified in mesoporous silicon. Phys Rev E. 2007;75:1–9.

    Article  CAS  Google Scholar 

  46. Yan X, Gao CF, Wang TB, Wang LP, Lan XZ. New phase behavior of n-undecane–tridecane mixtures confined in porous materials with pore sizes in a wide mesoscopic range. RSC Adv. 2013;3:18028–35.

    Article  CAS  Google Scholar 

  47. Yan X, Lan XZ. Phase behavior of undecane–tetradecane mixtures confined in SBA-15. Chin Chem Lett. 2013;24:885–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the financial support from National Natural Science Found of China (no. 21273138) and Natural Science Foundation of Shandong Province, China (no. ZR2010BM035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Z. Lan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L.P., Wang, T.B., Gao, C.F. et al. Phase behavior of dodecane–hexadecane mixtures in bulk and confined in SBA-15. J Therm Anal Calorim 116, 469–476 (2014). https://doi.org/10.1007/s10973-013-3525-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-013-3525-1

Keywords

Navigation