Skip to main content
Log in

Thermal conductivity of Al2O3/water nanofluids

Measurement, correlation, sensitivity analysis, and comparisons with literature reports

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A considerable number of studies can be found on the thermal conductivity of nanofluids in which Al2O3 nanoparticles are used as additives. In the present study, the aim is to measure the thermal conductivity of very narrow Al2O3 nanoparticles with the size of 5 nm suspended in water. The thermal conductivity of nanofluids with concentrations up to 5 % is measured in a temperature range between 26 and 55 °C. Using the experimental data, a correlation is presented as a function of the temperature and volume fraction of nanoparticles. Finally, a sensitivity analysis is performed to assess the sensitivity of thermal conductivity of nanofluids to increase the particle loading at different temperatures. The sensitivity analysis reveals that at a given concentration, the sensitivity of thermal conductivity to particle loading increases when the temperature increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Dev Appl Non Newton Flows. 1995;231:99–105.

    CAS  Google Scholar 

  2. Saidur R, Leong KY, Mohammad HA. A review on applications and challenges of nanofluids. Renew Sust Energ Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  3. Mahian O, Kianifar A, Kalogirou SA, Pop I, Wongwises S. A review of the applications of nanofluids in solar energy. Int J Heat Mass Transf. 2013;57:582–94.

    Article  CAS  Google Scholar 

  4. Wang X, Xu X, Choi SUS. Thermal conductivity of nanoparticle-fluid mixture. J Thermophys Heat Transf. 1999;13:474–80.

    Article  CAS  Google Scholar 

  5. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125:567–74.

    Article  CAS  Google Scholar 

  6. Putra N, Roetzel W, Das SK. Natural convection of nano-fluids. Heat Mass Transf. 2003;39:775–84.

    Article  Google Scholar 

  7. Masuda H, Ebata A, Teramae K, Hishinuma N. lteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles(dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles). Netsu Bussei. 1993;4:227–33.

    Article  Google Scholar 

  8. Lee S, Choi SUS, Li S, Eastman JA. Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf. 1999;121:280–9.

    Article  CAS  Google Scholar 

  9. Chon CH, Kihm KD, Lee SP, Choi SUS. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett. 2005;87:153107.

    Article  Google Scholar 

  10. Li CH, Peterson GP. The effect of particle size on the effective thermal conductivity of Al2O3-water nanofluids. J Appl Phys. 2007;101:044312.

    Article  Google Scholar 

  11. Zhang X, Gu H, Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. J Appl Phys. 2006;100:1–5.

    Article  Google Scholar 

  12. Timofeeva EV, Gavrilov AN, McCloskey JM, Tolmachev YV. Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E. 2007;76:061203.

    Article  Google Scholar 

  13. Wong KFV, Kurma T. Transport properties of alumina nanofluids. Nanotechnology. 2008;19:345702.

    Article  Google Scholar 

  14. Ju YS, Kim J, Hung MT. Experimental study of heat conduction in aqueous suspensions of aluminum oxide nanoparticles. J. Heat Transf. 2008;130:092403.

    Article  Google Scholar 

  15. Oh DW, Jain A, Eaton JK, Goodson KE, Lee JS. Thermal conductivity measurement and sedimentation detection of aluminum oxide nanofluids by using the 3ω method. Int J Heat Fluid Flow. 2008;29:1456–61.

    Article  CAS  Google Scholar 

  16. Sommers AD, Yerkes KL. Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid. J. Nanoparticle Res. 2010;12:1003–14.

    Article  CAS  Google Scholar 

  17. Sundar LS, Sharma KV. Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts. Int J Heat Mass Transf. 2010;53:1409–16.

    Article  CAS  Google Scholar 

  18. Longo GA, Zilio C. Experimental measurement of thermophysical properties of oxide-water nano-fluids down to ice-point. Exp Therm Fluid Sci. 2011;35:1313–24.

    Article  CAS  Google Scholar 

  19. Yiamsawasd T, Dalkilic AS, Wongwises S. Measurement of the thermal conductivity of titania and alumina nanofluids. Thermochim Acta. 2012;545:48–56.

    Article  CAS  Google Scholar 

  20. Barbés B, Páramo R, Blanco E, Pastoriza-Gallego MJ, Piñeiro MM, Legido JL, Casanova C. Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. J. Thermal Anal Calorim. 2013;11:1615–25.

    Article  Google Scholar 

  21. Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two-component systems. I&EC Fundam. 1962;1:182–91.

    Article  Google Scholar 

  22. Yu W, Choi SUS. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model. J Nanopart Res. 2003;5:167–71.

    Article  CAS  Google Scholar 

  23. Pak BC, Cho YI. Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles. Exp Heat Transfer. 1998;11:151–70.

    Article  CAS  Google Scholar 

  24. Roy G, Nguyen CT, Lajoie PR. Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids. Superlatt Microstruct. 2004;35:497–511.

    Article  CAS  Google Scholar 

  25. Minsta HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71.

    Article  Google Scholar 

  26. Murshed SMS, Leong KC, Yang C. Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci. 2008;47:560–8.

    Article  CAS  Google Scholar 

  27. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54:4410–28.

    Article  CAS  Google Scholar 

  28. Mahian O, Kianifar A, Wongwises S. Dispersion of ZnO nanoparticles in a mixture of ethylene glycol–water, exploration of temperature-dependent density, and sensitivity analysis. J Clust Sci. 2013;24:1103–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the assistance provided by the Nanofluid Laboratory of Semnan University Science and Technology Park for providing necessary instruments to carry out the sample preparation and help in the analysis of samples to complete the article in time. The third and fourth authors wish to thank the National Science and Technology Development Agency and the National Research University Project for the support. Also, Omid Mahian wishes to thank Prof. Somchai Wongwises for his supports during his research at King Mongkut’s University of Technology Thonburi, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Hemmat Esfe or Omid Mahian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemmat Esfe, M., Saedodin, S., Mahian, O. et al. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim 117, 675–681 (2014). https://doi.org/10.1007/s10973-014-3771-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3771-x

Keywords

Navigation