Skip to main content
Log in

TG–MS analysis of thermal behavior and gaseous emissions during co-combustion of straw with municipal sewage sludge

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behavior and gas product distribution during combustion of straw (wheat straw, corn stalks, and cotton stalks), municipal sewage sludge (MSS), and their blends were investigated by thermogravimetry–mass spectroscopy. The experiments were conducted with various blending ratios and temperatures ranging from 323 to 1,173 K. Addition of MSS decreased the combustion performance of the straw. The reactions between wheat straw and corn stalks with MSS proceeded more easily than that of cotton stalks. Significant interactions were observed between the straw and MSS at the char combustion stage. Gaseous species (CO2, SO2, NH3, HCN, and NO) were mainly produced at temperatures of 523–873 K at which most of the mass loss occurred. Higher MSS proportions in the blends resulted in lower emissions peaks for CO2, NH3, HCN, and NO except for SO2. To ensure combustion performance and mitigate problematic gaseous emissions, the proportion of MSS added to the blends should be <30 mass%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tarelho LAC, Neves DSF, Matos MAA. Forest biomass waste combustion in a pilot-scale bubbling fluidised bed combustor. Biomass Bioenergy. 2011;35(4):1511–23.

    Article  CAS  Google Scholar 

  2. Jenkins BM, Baxter LL, Miles TR Jr, Miles TR. Combustion properties of biomass. Fuel Process Technol. 1998;54(1–3):17–46.

    Article  CAS  Google Scholar 

  3. Ray CD, Ma L, Wilson T, Wilson D, McCreery L, Wiedenbeck JK. Biomass boiler conversion potential in the eastern United States. Renew Energy. 2014;62:439–53.

    Article  Google Scholar 

  4. Williams A, Jones JM, Ma L, Pourkashanian M. Pollutants from the combustion of solid biomass fuels. Prog Energy Combust Sci. 2012;38(2):113–37.

    Article  CAS  Google Scholar 

  5. Shao JG, Lee DH, Yan R, Liu M, Wang XL, Liang DT, White TJ, Chen H. Agglomeration characteristics of sludge combustion in a bench-scale fluidized bed combustor. Energy Fuels. 2007;21(5):2608–14.

    Article  CAS  Google Scholar 

  6. Bartels M, Lin W, Nijenhuis J, Kapteijn F, Van Ommen JR. Agglomeration in fluidized beds at high temperatures: mechanisms, detection and prevention. Prog Energy Combust Sci. 2008;34(5):633–66.

    Article  CAS  Google Scholar 

  7. Rulkens W. Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy Fuels. 2008;22(1):9–15.

    Article  CAS  Google Scholar 

  8. Werther J, Ogada T. Sewage sludge combustion. Prog Energy Combust Sci. 1999;25(1):55–116.

    Article  CAS  Google Scholar 

  9. Werle S, Wilk RK. A review of methods for the thermal utilization of sewage sludge: the Polish perspective. Renew Energy. 2010;35(9):1914–9.

    Article  CAS  Google Scholar 

  10. Parshetti GK, Liu Z, Jain A, Srinivasan MP, Balasubramanian R. Hydrothermal carbonization of sewage sludge for energy production with coal. Fuel. 2013;111:201–10.

    Article  CAS  Google Scholar 

  11. Zheng G, Koziński JA. Thermal events occurring during the combustion of biomass residue. Fuel. 2000;79(2):181–92.

    Article  CAS  Google Scholar 

  12. Donatello S, Cheeseman CR. Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag. 2013;33(11):2328–40.

    Article  CAS  Google Scholar 

  13. Elled AL, Davidsson KO, Åmand LE. Sewage sludge as a deposit inhibitor when co-fired with high potassium fuels. Biomass Bioenergy. 2010;34(11):1546–54.

    Article  CAS  Google Scholar 

  14. Åmand L-E, Leckner B, Eskilsson D, Tullin C. Deposits on heat transfer tubes during co-combustion of biofuels and sewage sludge. Fuel. 2006;85(10–11):1313–22.

    Article  Google Scholar 

  15. Davidsson KO, Åmand LE, Elled AL, Leckner B. Effect of cofiring coal and biofuel with sewage sludge on alkali problems in a circulating fluidized bed boiler. Energy Fuels. 2007;21(6):3180–8.

    Article  CAS  Google Scholar 

  16. Skoglund N, Grimm A, Öhman M, Boström D. Effects on ash chemistry when co-firing municipal sewage sludge and wheat straw in a fluidised bed Influence on the ash chemistry by fuel mixing. Energy Fuels. 2013;27(10):5725–32.

    Article  CAS  Google Scholar 

  17. Li L, Ren Q, Li S, Lu Q. Effect of phosphorus on the behavior of potassium during the co-combustion of wheat straw with municipal sewage sludge. Energy Fuels. 2013;27(10):5923–30.

    Article  CAS  Google Scholar 

  18. Arenillas A, Rubiera F, Pis JJ. Simultaneous thermogravimetric–mass spectrometric study on the pyrolysis behaviour of different rank coals. J Anal Appl Pyrolysis. 1999;50(1):31–46.

    Article  CAS  Google Scholar 

  19. Materazzi S. Mass spectrometry coupled to thermogravimetry (TG–MS) for evolved gas characterization: a review. Appl Spectrosc Rev. 1998;33(3):189–218.

    Article  CAS  Google Scholar 

  20. Materazzi S, Vecchio S. Evolved gas analysis by mass spectrometry. Appl Spectrosc Rev. 2011;46(4):261–340.

    Article  Google Scholar 

  21. Poskrobko S, Król D. Biofuels. J Therm Anal Calorim. 2012;109(2):629–38.

    Article  CAS  Google Scholar 

  22. Zhao H-Y, Cao Y, Sit S, Lineberry Q, Pan W-P. Thermal characteristics of bitumen pyrolysis. J Therm Anal Calorim. 2012;107(2):541–7.

    Article  CAS  Google Scholar 

  23. Ischia M, Perazzolli C, Dal Maschio R, Campostrini R. Pyrolysis study of sewage sludge by TG–MS and TG–GC/MS coupled analyses. J Therm Anal Calorim. 2007;87(2):567–74.

    Article  CAS  Google Scholar 

  24. Otero M, Díez C, Calvo LF, García AI, Morán A. Analysis of the co-combustion of sewage sludge and coal by TG–MS. Biomass Bioenergy. 2002;22(4):319–29.

    Article  CAS  Google Scholar 

  25. Otero M, Sanchez M, García A, Morán A. Simultaneous thermogravimetric–mass spectrometric study on the co-combustion of coal and sewage sludges. J Therm Anal Calorim. 2006;86(2):489–95.

    Article  CAS  Google Scholar 

  26. Otero M, Calvo LF, Gil MV, García AI, Morán A. Co-combustion of different sewage sludge and coal: a non-isothermal thermogravimetric kinetic analysis. Bioresour Technol. 2008;99(14):6311–9.

    Article  CAS  Google Scholar 

  27. Otero M, Sanchez ME, Gomez X. Co-firing of coal and manure biomass: a TG–MS approach. Bioresour Technol. 2011;102(17):8304–9.

    Article  CAS  Google Scholar 

  28. Su W, Ma H, Wang Q, Li J, Ma J. Thermal behavior and gaseous emission analysis during co-combustion of ethanol fermentation residue from food waste and coal using TG-FTIR. J Anal Appl Pyrolysis. 2013;99:79–84.

    Article  CAS  Google Scholar 

  29. Magdziarz A, Wilk M. Thermogravimetric study of biomass, sewage sludge and coal combustion. Energy Convers Manag. 2013;75:425–30.

    Article  CAS  Google Scholar 

  30. Spliethoff H, Hein KRG. Effect of co-combustion of biomass on emissions in pulverized fuel furnaces. Fuel Process Technol. 1998;54(1–3):189–205.

    Article  CAS  Google Scholar 

  31. Idris SS, Rahman NA, Ismail K. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA). Bioresour Technol. 2012;123:581–91.

    Article  CAS  Google Scholar 

  32. Muthuraman M, Namioka T, Yoshikawa K. Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: a thermogravimetric analysis. Appl Energy. 2010;87(1):141–8.

    Article  CAS  Google Scholar 

  33. Wang C, Wang F, Yang Q, Liang R. Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenergy. 2009;33(1):50–6.

    Article  Google Scholar 

  34. Guo Q, Zhang X, Li C, Liu X, Li J. TG–MS study of the thermo-oxidative behavior of plastic automobile shredder residues. J Hazard Mater. 2012;209–210:443–8.

    Article  Google Scholar 

  35. Stubenberger G, Scharler R, Zahirović S, Obernberger I. Experimental investigation of nitrogen species release from different solid biomass fuels as a basis for release models. Fuel. 2008;87(6):793–806.

    Article  CAS  Google Scholar 

  36. Huang YF, Kuan WH, Chiueh PT, Lo SL. Pyrolysis of biomass by thermal analysis–mass spectrometry (TA–MS). Bioresour Technol. 2011;102(3):3527–34.

    Article  CAS  Google Scholar 

  37. Gil MV, Casal D, Pevida C, Pis JJ, Rubiera F. Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Bioresour Technol. 2010;101(14):5601–8.

    Article  CAS  Google Scholar 

  38. Liu NA, Fan W, Dobashi R, Huang L. Kinetic modeling of thermal decomposition of natural cellulosic materials in air atmosphere. J Anal Appl Pyrolysis. 2002;63(2):303–25.

    Article  CAS  Google Scholar 

  39. Font R, Fullana A, Conesa JA, Llavador F. Analysis of the pyrolysis and combustion of different sewage sludges by TG. J Anal Appl Pyrolysis. 2001;58–59:927–41.

    Article  Google Scholar 

  40. Zhu Y, Chai X, Li H, Zhao Y, Wei Y. Combination of combustion with pyrolysis for studying the stabilization process of sludge in landfill. Thermochim Acta. 2007;464(1–2):59–64.

    Article  CAS  Google Scholar 

  41. Wang Q, Zhao W, Liu H, Jia C, Li S. Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion. Appl Energy. 2011;88(6):2080–7.

    Article  CAS  Google Scholar 

  42. Várhegyi G, Szabó P, Till F, Zelei B, Antal MJ, Dai X. TG, TG–MS, and FTIR characterization of high-yield biomass charcoals. Energy Fuels. 1998;12(5):969–74.

    Article  Google Scholar 

  43. Liu Y, Che D. Releases of NO and its precursors from coal combustion in a fixed bed. Fuel Process Technol. 2006;87(4):355–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (No. 51106157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangqiang Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ren, Q., Wang, X. et al. TG–MS analysis of thermal behavior and gaseous emissions during co-combustion of straw with municipal sewage sludge. J Therm Anal Calorim 118, 449–460 (2014). https://doi.org/10.1007/s10973-014-3952-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3952-7

Keywords

Navigation