Skip to main content
Log in

Specific heat capacity and thermodynamic properties of CuTeO3 and HgTeO3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Tellurites of CuTeO3 and HgTeO3 are synthesized and their specific molar heat capacities are experimentally determined for the first time. The tellurites discussed in the present paper are used for preparation of optical glasses with special properties for optoelectronics, nuclear and power industries. The tellurites synthesized are prepared for chemical analysis, differential thermal analysis and X-ray analysis. The use of the tellurites studied is related to knowing their thermodynamic properties like specific molar heat capacity (C p,m), enthalpy \( \left( {\Delta_{{{\text {T}}^{\prime}}}^{\text{T}} H_{\text{m}}^{0} } \right), \) entropy \( \left( {\Delta_{{{\text {T}}^{\prime}}}^{\text{T}} S_{\text{m}}^{0} } \right) \) and Gibbs energy \( \left( { - \Delta_{{{\text {T}}^{\prime}}}^{\text{T}} G_{\text{m}}^{0} } \right) \). The temperature dependences of their molar heat capacities are determined using the least squares method. The thermodynamic properties are calculated: entropy, enthalpy and Gibbs function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Rustembekov KT, Dyusekeeva AT. Heat capacity and thermodynamic functions of cadmium tellurites in the range of 298.15–673 K. Russ J Phys Chem A. 2013;87:714–8.

    Article  CAS  Google Scholar 

  2. Khattak GD, Mekki A, Wenger LE. Local structure and redox state of copper in tellurite glasses. J Non-Cryst Solids. 2004;337:174–81.

    Article  CAS  Google Scholar 

  3. Golis EP, Reben M, Wasylak J, Filipecki J. Investigation of tellurite glasses for optoelectronics devices. Opt Appl. 2008;38:163–7.

    CAS  Google Scholar 

  4. Mao JG, Jiang HL, Kong F. Structures and properties of functional metal selenites and tellurites. Inorg Chem. 2008;47:8498–510.

    Article  CAS  Google Scholar 

  5. Feger CR, Kolis JW. Synthesis and characterization of two copper tellurites, Ba (2)Cu(4)Te(4)O(11)Cl(4) and BaCu(2)Te(2)O(6)Cl(2) in supercritical H(2)O. Inorg Chem. 1998;37:4046–51.

    Article  CAS  Google Scholar 

  6. Ghosh A. Electrical properties semiconducting amorphous copper- tellurite glasses. J Phys. 1989;1:7819–28.

    CAS  Google Scholar 

  7. Bendaoud S, Aride J, Taibi M, Belaiche M, Boukhari A, Drillon M. Magnetic properties of some copper and nickel tellurates and tellurites. Adv Mater Res. 1994;1–2:553–62.

    Article  Google Scholar 

  8. Pertlik F. Dimorphism of hydrothermal synthesized copper tellurite, CuTeO3: the structure of a monoclinic representative. J Solid State Chem. 1987;71:291–5.

    Article  CAS  Google Scholar 

  9. Castaing O, Granger R, Benhlal JT, Lemoine D, Verdy O, Triboulet R. Optical characterization of electrochemically grown anodic oxide on Hg0.85Zn0.15Te. Semicond Sci Technol. 1995;10:983–7.

    Article  CAS  Google Scholar 

  10. Jeon HC, Leem JH, Ryu YS, Kang CK, Kim NH, Kang TW, Kim HJ, Kim DY, Han MS. Surface passivation of Hg0.8Cd0.2Te grown by MBE. Opto-Electron Rev. 1999;7:357–60.

    CAS  Google Scholar 

  11. Morgen P, Wilson JA. Preferential chemical reaction during noble gas ion sputtering of Hg1−x Cd x Te and its oxides. Nucl Instrum Methods Phys Res Sect B. 1987;26:585–90.

    Article  Google Scholar 

  12. Souri D, Selehizadeh SA. Glass transition, fragility, and structural features of amorphous nickel—tellurate-vanadate samples. J Therm Anal Calorim. 2013;111:689–95.

    Article  Google Scholar 

  13. Georgiev G. Heat capacity of copper tellurates (IV) at temperatures from 350 to 550 K. J Chem Thermodyn. 1994;26:1111–3.

    Article  Google Scholar 

  14. Atanasova L, Baikusheva – Dimitrova G. Heat capacity and thermodynamic properties of tellurites of Er2(TeO3)3, Yb2(TeO3)3, Dy2(TeO3)3. J Therm Anal Calorim. 2012;107:809–12.

    Article  CAS  Google Scholar 

  15. Umlang V, Jansen A, Tierg P, Winsh S. Theorie und Praktische Anwendung von Complexbildern. Frankfurt am main: Dechema; 1971.

    Google Scholar 

  16. Nazarenko JI, Ermakov EI. Analytical chemistry of selenium and tellurium. Moscow: Science; 1974.

    Google Scholar 

  17. McNaughton JL, Mortimer CT. Differential scanning calorimetry. Norvalk: Perkin-Elmer Corporation; 1975.

    Google Scholar 

  18. Gospodinov G. Phase states of copper orthotellurates in an aqueous medium and in thermolysis. J Mater Sci Lett. 1992;11:1460–2.

    Article  CAS  Google Scholar 

  19. Bojanov ES, Vuchkov IN. Statistical methods for modeling and optimization of multifactor objects. Sofia: Technics; 1973.

    Google Scholar 

  20. Vuchkov IN, Stoyanov StK. Mathematical modeling and optimization of technology objects. Sofia: Technics; 1986.

  21. Kafarov VV. Cybernetics methods of chemistry and chemistry technology. Moscow: Chemistry; 1976.

    Google Scholar 

  22. Koumok VN. Methods for assessment of thermodynamic characteristics. Novosibirsk: Science; 1987.

    Google Scholar 

  23. Norman C. Entropy analyses of four familiar processes. J Chem Educ. 1988;65:700–764. http://2ndlaw.oxy.edu/gibbs.html.

  24. Karapetianc M. Chemical thermodynamics. Moscow: Chemistry; 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lubka Atanasova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atanasova, L., Baikusheva-Dimitrova, G. & Gospodinov, G. Specific heat capacity and thermodynamic properties of CuTeO3 and HgTeO3 . J Therm Anal Calorim 118, 493–497 (2014). https://doi.org/10.1007/s10973-014-4001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4001-2

Keywords

Navigation