Skip to main content
Log in

Synthesis, characterization and catalytic activity of Al/Fe2O3 nanothermite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Nanothermites have attracted much attention owing to their excellent sensitivity and catalytic activity. In this paper, Fe2O3 is used to achieve Al/Fe2O3 nanothermite by mixing nano-Al with Fe2O3 nanopowder. X-ray diffraction, field emission gun scanning electron microscopy, energy dispersive X-ray spectra, and transmission electron microscopy were employed to study the structural features of the nanothermite. Its catalytic activity was investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetric analysis (TG), TG coupled with differential scanning calorimetry, and ignition delay measurements. Kinetics of thermal decomposition of AP with and without Al/Fe2O3 has also been investigated using model fitting and isoconversional methods which have been applied to data for isothermal TG decomposition. Activation energy values have been found to be lowered in case of AP + Al/Fe2O3. The results revealed enhancement in the rate of decomposition of AP and CSPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shin M-S, et al. Reaction characteristics of Al/Fe2O3 nanocomposites. J Ind Eng Chem. 2012;18:1768–73.

    Article  CAS  Google Scholar 

  2. Spitzer D, Comet M, Moeglin J-P, Stechele E, Werner, Udo, Suma Y. Synthesis and investigation of the reactivity of nanothermite mixtures, 7th international annual conference ICT, 2006;117/1-117/10.

  3. Martin JA, Murray AS, Busse JR. Metastable intermolecular composite. Warhead Technol. 1998;179–91.

  4. Britoa P, Duraes L, Campos J, Portugal A. Simulation of Fe2O3/Al combustion: sensitivity analysis. Chem Eng Sci. 2007;62:5078–83.

    Article  Google Scholar 

  5. Pantoya ML, Son SF, Danen W, Jorgenson B, Asay BW, Brusse J, Mang JT. Defence application of nanomaterials, ACS Symposium series, Am Chem Soc Washington, DC, 2003 (Chapter 16).

  6. Bockmon B, Pantoya ML, Son SF, Asay B. Proceedings of the 41st AIAA Aerospace sciences meetings, Energetic Materials, Reno, NV, 2003. AIAA-2003-0241.

  7. Plantier KB, Pantoya ML, Gash AE. Combustion wave speed of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique. Combust Flame. 2005;140:299–309.

    Article  CAS  Google Scholar 

  8. Clapsaddle BJ, Zhao L, Gash AE, Satcher JH, Shea KJ, Pantoya ML, Simpson RL. Synthesis and characterization of mixed metal oxide nanocomposite energetic materials. Res Soc Symp Proc. 2004;800:AA2.7.1–6.

    Google Scholar 

  9. Prakash A, McCormick AV, Zachariah MR. Aero-sol-gel synthesis of nanoporous iron-oxide particles: a potential oxidizer for nanoenergetic materials. Chem Mater. 2004;16:1461–6.

    Article  Google Scholar 

  10. Schoenitz M, Ward T, Dreizin EL. Preparation of energetic metastable nanocomposite materials by arrested reactive milling. Mater Res Soc Symp Proc. 2004;800:AA2.6.1–6.

    Google Scholar 

  11. Tillotson TM, Gash AE, Simpson RL, Hrubesh LW, Satcher JH Jr, Poco JF. Nanostructured energetic materials using sol-gel methodologies. J Non-Cryst Solids. 2001;285(1–3):338–45.

    Article  CAS  Google Scholar 

  12. Gash AE, Satcher JH, Simpson RL, Clapsaddle BJ. Nanostructured Energetic Materials via Modified Sol-Gel Methods. mat Res Soc SympProc. 2004;800:AA7.8.1–8.10.

    Google Scholar 

  13. Singh S, Srivastava P, Kapoor IPS, Singh G. Preparation, characterization and catalytic activity of rare earth metal oxide nanoparticles. J Therm Anal Cal. 2013;111:1073–82.

    Article  CAS  Google Scholar 

  14. Srivastava P, Dubey R, Kapoor IPS, Singh G. Synthesis, characterization and catalytic effect of bimetallic nanocrystals on the thermal decomposition of ammonium perchlorate. Indian J Chem Sec A. 2010;49(A):1339–44.

  15. Singh G, Sengupta SK, Kapoor IPS, Dubey S, Dubey R, Singh S. Nanoparticles of transition metals as accelerants in the thermal decomposition of AP, part 62. J Energ Mater. 2013;31:165–77.

    Article  CAS  Google Scholar 

  16. Dubey R, Singh G, Kapoor IPS. Synthesis, characterization and catalytic behavior of Cu nanoparticles on the thermal decomposition of AP, HMX, NTO and composite solid propellants. Thermochim Acta. 2012;549:102–9.

    Article  CAS  Google Scholar 

  17. Liu LL, Li FS, Tan LH, Yang Y, Yi Q. Preparation of nanometer Ni and amorphous Ni2B alloys and their effects on the thermal decomposition characteristics of ammonium perchlorate. Acta armamentaria. 2005;25(4):428–30.

    Google Scholar 

  18. Cao XF, Li FS, Yang Y, Liu JX. Catalytic performance of nanometer Co-B amorphous alloy for ammonium perchlorate decomposition. Chin J Catal. 2006;27(2):157–60.

    CAS  Google Scholar 

  19. Kapoor IPS, Srivastava P, Singh G. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2004;34:351–6.

    Article  Google Scholar 

  20. Kulkarni NV, et al. Growth of nano-particles of Al2O3, AlN and iron oxide with different crystalline phases in a thermal plasma reactor. Mat Res Bull. 2009;44:581.

    Article  CAS  Google Scholar 

  21. Kulkarni NV, et al. Study on growth of hollow nanoparticles. J Mater Sci. 2011;46:2212–20.

    Article  CAS  Google Scholar 

  22. Krishna S, Swami RD. Effect of catalyst mixing procedure on subatmospheric combustion characteristic of composite propellants. J Propul Power. 1997;13:207–12.

    Article  Google Scholar 

  23. Brown ME, Dollimore D, Galway AK. Reactions in the solid state. In: Comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1997. p. 1–340.

  24. Singh G, Siril PF. Studies of energetic compounds Part 29: effect of NTO and its salt on the combustion and condensed phase thermolysis of composite solid propellants, HTPB-AP. Combust Flame. 2003;132:422–32.

    Article  CAS  Google Scholar 

  25. Rastogi RP, Singh G, Dubey BL, Shukla CS. Solid state chemistry of copper chromite used as a catalyst for the burning of ammonium perchlorate/polystyrene propellants. J Catalysis. 1980;65:25–30.

    Article  CAS  Google Scholar 

  26. Rastogi RP, Singh G, Singh RR. Mixture of oxides of copper and chromium as potential burning rate catalysts for composite solid propellant. Combust Flame. 1978;33:305–10.

    Article  CAS  Google Scholar 

  27. Singh G, Singh RR. Indigeneously fabricated apparatus for thermogravimetric analysis. Res Ind. 1978;23:92–3.

    CAS  Google Scholar 

  28. Vyazovkin S. A unified approach to kinetic processing of non-isothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  29. Vyazovkin S, Burnham AK, Criado MJ, Periz-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendation for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  30. Lang AJ, Vyazovkin S. Effect of pressure and sample type on decomposition of ammonium perchlorate. Combust Flame. 2006;145:779–90.

    Article  CAS  Google Scholar 

  31. Singh G, Vasudeva SK, Kapoor IPS. Thermolysis of AP-PS additive mixture. Indian J Technol. 1991;29:589–94.

    CAS  Google Scholar 

  32. Semenov N. Chemical Kinetics and Chain Reactions. Oxford: Clarendon Press; 1935 (chapter 18).

    Google Scholar 

  33. Freeman ES, Gordon S. The application of the absolute rate theory of the ignition of preoperatively reacting systems: thermal ignition of the system, Lithium Nitrate-Magnesium, Sodium nitrate-Magnesium. J Phys Chem. 1956;60:867–71.

    Article  CAS  Google Scholar 

  34. Zinn J, Rogers RN. Thermal ignition of explosives. J Phys Chem. 1962;66:2646–50.

    Article  CAS  Google Scholar 

  35. Singh G, Baranwal BP, Kapoor IPS, Kumar D, Singh CP, Frohlich R. Some transition metal nitrate complexes with hexamethylene tetramine Part LV. Preparation, X-ray crystallography and thermal decomposition. J. Therm Anal Cal 2008;91:971–7.

  36. Kumar D, Kapoor IPS, Singh G, Singh UP, Goel N. Lanthanoid metal nitrates with hydrogen bonded hexamethylenetetramine-Preparation, characterization and kinetic of thermolysis. J Therm Anal Calorim. 2013;114:5–18.

    Article  CAS  Google Scholar 

  37. Singh G, Singh RR, Rai AP, Kapoor IPS. Thermal analysis of ammonium perchlorate + polystyrene + additive mixtures I. J Therm Anal Cal. 1990;36:2539–46.

    Article  CAS  Google Scholar 

  38. Singh G, Kapoor IPS, Kumar D, Singh UP, Goel N. Preparation, X-ray crystallography and thermal decomposition of some transition metal perchlorate complexes with perchlorate and 2,2′-bipyridyl ligands. Inorg Chim Acta. 2008;362:4091–8.

    Article  Google Scholar 

  39. Henkin H, McGill R. Rates of decomposition of explosive. Experiments and theoretical kinetic study as a function of temperature. Ind Eng Chem. 1952;44:1391–5.

    Article  CAS  Google Scholar 

  40. Singh K. Sensitivity of cuprous azide towards heat and impact. Trans Faraday Soc. 1959;55:124–9.

    Article  CAS  Google Scholar 

  41. Bircumshaw LL, Newman BH. The thermal decomposition of ammonium perchlorate. I. introduction, experimental, analysis of gaseous products, and thermal decomposition experiments. Proc R Soc A. 1954;227:115–32.

  42. Jacobs PWM, Pearson GS. Mechanism of decomposition of ammonium perchlorate. Combust Flame. 1969;13:419–30.

    Article  CAS  Google Scholar 

  43. Roser WA, Inami SH, Wise H. Thermal decomposition of ammonium perchlorate Combust. Flame. 1968;12:427–35.

    Article  Google Scholar 

  44. Kishore K, Sridhara K. Solid propellant chemistry: condensed phase behavior of ammonium perchlorate based solid propellants. New Delhi: DESIDOC; 1999. p. 10.

    Google Scholar 

  45. Boldirev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443:1–36.

    Article  Google Scholar 

  46. Vyazovkin S, Wight ACA. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem Mater. 1999;11:3386–93.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Head, Chemistry Department of DDU Gorakhpur University for laboratory facility, IIT Roorkee for TG-DSC, STIC Cochin for XRD and EDS, and IIT Bombay for FEG-SEM analysis. Thanks are also due to financial assistance by DST for providing Emeritus Scientist to Gurdip Singh and INSPIRE fellowship to Supriya Singh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurdip Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, G., Kulkarni, N. et al. Synthesis, characterization and catalytic activity of Al/Fe2O3 nanothermite. J Therm Anal Calorim 119, 309–317 (2015). https://doi.org/10.1007/s10973-014-4100-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4100-0

Keywords

Navigation