Skip to main content
Log in

Thermal decomposition of HTPB/AP and HTPB/HMX mixtures with low content of oxidizer

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, hydroxyl-terminated polybutadiene (HTPB)/ammonium perchlorate (AP) and HTPB/cyclotetramethylene tetranitramine (HMX) mixtures with low content of oxidizer were prepared, and the thermal decomposition process of these mixtures was investigated with TG-FTIR and Raman spectrum. The experimental results indicated that during the thermal decomposition process under an inert atmosphere, HTPB and the two oxidizers could both decompose into gaseous products completely, while the mixture of HTPB and the two oxidizers produced some solid residue with carbon as the main ingredient; unlike the thermal decomposition of HTPB under argon atmosphere, HTPB cannot decompose completely under air or oxygen atmosphere, and the more the concentration of oxygen, the more the solid residue produced. Decreasing the content of oxidizer reacting with HTPB may improve the combustion performance of fuel-rich propellants by increasing the combustion temperature and the percentage of gaseous products. The results of this paper can provide the useful information for improving the combustion performance of fuel-rich propellants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kuo KK, Summerfield M. Fundamentals of solid-propellant combustion. New York: American Institute of Aeronautics and Astronautics; 1984.

    Book  Google Scholar 

  2. Cai WD, Thakre P, Yang V. A model of Ap/Htpb composite propellant combustion in rocket-motor environments. Combust Sci Technol. 2008;180(12):2143–69. doi:10.1080/00102200802414915.

    Article  CAS  Google Scholar 

  3. Chen JK, Brill TB. Chemistry and kinetics of hydroxyl-terminated polybutadiene (Htpb) and diisocyanate Htpb polymers during slow decomposition and combustion-like conditions. Combust Flame. 1991;87(3–4):217–32. doi:10.1016/0010-2180(91)90109-O.

    Article  CAS  Google Scholar 

  4. Du TF. Thermal-decomposition studies of solid-propellant binder Htpb. Thermochim Acta. 1989;138(2):189–97.

    Article  CAS  Google Scholar 

  5. Bircumshaw LL, Newman BH. The thermal decomposition of ammonium perchlorate.2. the kinetics of the decomposition, the effect of particle size, and discussion of results. Proc R Soc Lon Ser-A. 1955;227(1169):228–41. doi:10.1098/rspa.1955.0006.

    Article  CAS  Google Scholar 

  6. Bircumshaw LL, Phillips TR. The kinetics of the thermal decomposition of ammonium perchlorate. J Chem Soc. 1957;. doi:10.1039/Jr9570004741.

    Google Scholar 

  7. Boldyrev VV. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443(1):1–36. doi:10.1016/j.tca.2005.11.038.

    Article  CAS  Google Scholar 

  8. Menke K, Eisele S. Rocket propellants with reduced smoke and high burning rates. Propell Explos Pyrot. 1997;22(3):112–9. doi:10.1002/prep.19970220304.

    Article  CAS  Google Scholar 

  9. Liu L-L, He G-Q, Wang Y-H. Thermal reaction characteristics of the boron used in the fuel-rich propellant. J Therm Anal Calorim. 2013;114(3):1057–68.

    Article  CAS  Google Scholar 

  10. Kaser F, Bohn MA. Decomposition in HTPB bonded HMX followed by heat generation rate and chemiluminescence. J Therm Anal Calorim. 2009;96(3):687–95. doi:10.1007/s10973-009-0031-6.

    Article  Google Scholar 

  11. Rocco JAFF, Lima JES, Frutuoso AG, Iha K, Ionashiro M, Matos JR, et al. Thermal degradation of a composite solid propellant examined by DSC—kinetic study. J Therm Anal Calorim. 2004;75(2):551–7. doi:10.1023/B:Jtan.0000027145.14854.F0.

    Article  CAS  Google Scholar 

  12. Vyazovkin S, Wight CA. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem Mater. 1999;11(11):3386–93. doi:10.1021/Cm9904382.

    Article  CAS  Google Scholar 

  13. Li X, Liu X, Cheng Y, Li Y, Mei X. Thermal decomposition properties of double-base propellant and ammonium perchlorate. J Therm Anal Calorim. 2014;115(1):887–94.

    Article  CAS  Google Scholar 

  14. Zhu Y-L, Huang H, Ren H, Jiao Q-J. Kinetics of thermal decomposition of ammonium perchlorate by TG/DSC-MS-FTIR. J Energ Mater. 2014;32(1):16–26.

    Article  CAS  Google Scholar 

  15. Liu LL, He GQ, Wang YH. Effect of oxidizer on the combustion performance of boron-based fuel-rich propellant. J Propul Power. 2014;30(2):285–9. doi:10.2514/1.B34909.

    Article  CAS  Google Scholar 

  16. Liu LL, He GQ, Wang YH, Liu PJ. Factors affecting the measurement of the percentage of gaseous products from boron-based fuel-rich propellants. Cent Eur J Energ Mat. 2014;11(1):15–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-hong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Yh., Liu, Ll., Xiao, Ly. et al. Thermal decomposition of HTPB/AP and HTPB/HMX mixtures with low content of oxidizer. J Therm Anal Calorim 119, 1673–1678 (2015). https://doi.org/10.1007/s10973-014-4324-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4324-z

Keywords

Navigation