Skip to main content
Log in

Study on the molecular structure and thermal stability of pyrimidine nucleoside analogs

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal decomposition processes for ten pyrimidine nucleoside analogs were measured with thermogravimetry and differential scanning calorimetry. The IR spectra, high-performance liquid chromatography, and liquid chromatography–mass spectrometry of pyrimidine nucleoside analogs and their residues of thermal decomposition at various temperatures were determined. The molecular bond orders of pyrimidines and pyrimidine nucleoside analogs were calculated with an ab initio method from the GAMESS program. We then discuss mechanisms of thermal decomposition in these pyrimidine nucleoside analogs. The results indicate that there are four types of mechanisms. The decomposition mechanism depends on the relative strength of the peptide bond and the amide bond within pyrimidine ring and whether or not accompanied by oxidation reaction. The substituent groups affect the thermal stability and the thermal decomposition mechanism of pyrimidine nucleoside analogs. Increasing the number of electron-donating groups on the pyrimidine ring and furan ring will enhance the peptide bond, and will elevate the temperature of thermal decomposition. There is a positive correlation between the molecular bond orders calculated by quantum chemistry and the thermal decomposition temperature of pyrimidine nucleoside analogs. The stronger the weakest bond order, the higher the decomposition temperature. The molecular bond orders thus can be used as a basis to judge molecular thermal stability for analog compounds with similar molecular structure, size, and energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Scheme 3
Fig. 10

Similar content being viewed by others

References

  1. Clercq ED. A 40-year journey in search of selective antiviral chemotherapy. Annu Rev Pharmacol Toxicol. 2011;51:1–24.

    Article  Google Scholar 

  2. Galmarini CM, Jordheim L, Dumontet C. Pyrimidine nucleoside analogs in cancer treatment. Expert Rev Anticancer Ther. 2003;3:717–28.

    Article  CAS  Google Scholar 

  3. Wikipedia. The free encyclopedia. Zidovudine. http://www.en.wikipedia.org/wiki/Zidovudine.

  4. Wright K. AIDS therapy. first tentative signs of therapeutic promise. Nature. 1986;323:283.

    CAS  Google Scholar 

  5. Brook I. Approval of zidovudine (AZT) for acquired immunodeficiency syndrome. J Am Med Assoc. 1987;258:1517.

    Article  CAS  Google Scholar 

  6. Liu Y, Lin J, Zheng YG, Zhu BQ. Application of zidovudine in cancer therapy. World Clin Drugs. 2012;33:311–3.

    Google Scholar 

  7. Wikipedia. The free encyclopedia. Stavudine. http://www.en.wikipedia.org/wiki/Stavudine.

  8. Clercq ED. Perspectives for the chemotherapy of AIDS. Chemioterapia. 1988;7:357–64.

    Google Scholar 

  9. Lea AP, Faulds D. Stavudine: a review of its pharmacodynamic and pharmacokinetic properties and clinical potential in HIV infection. Drugs. 1996;51:846–64.

    Article  CAS  Google Scholar 

  10. Wikipedia. The free encyclopedia. Lamivudine. http://www.en.wikipedia.org/wiki/Lamivudine.

  11. Bernard B, deceased, Nghe N-B. Use of 1,3-oxathiolane nucleoside analogues in the treatment of hepatitis B. U.S.P. 5532246; 1996.

  12. Perry CM, Faulds D. Lamivudine: a review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy in the management of HIV infection. Drugs. 1997;53:657–80.

    Article  CAS  Google Scholar 

  13. Wikipedia. The free encyclopedia. Telbivudine. http://www.en.wikipedia.org/wiki/Telbivudine.

  14. Lai CL, Leung N, Teo EK, Tong M, Wong F, Hann HW, Han S, Poynard T, Myers M, Chao G, Lloyd D, Brown NA. A 1-year trial of telbivudine, lamivudine, and the combination in patients with hepatitis B e antigen-positive chronic hepatitis B. Gastroenterology. 2005;129:528–38.

    Article  CAS  Google Scholar 

  15. Wang XJ, You JZ. Mechanism and kinetics of thermal decomposition of lamivudine. J Shenyang Pharm Univ. 2010;27:610–4.

    CAS  Google Scholar 

  16. Wang XJ, You JZ. Thermal decomposition mechanism and kinetics of stavudine. Chin J Appl Chem. 2011;28:709–15.

    Article  CAS  Google Scholar 

  17. Wang XJ, You JZ. Mechanism and kinetics of thermal decomposition of telbivudine. J Anal Appl Pyrol. 2014;108:228–33.

    Article  CAS  Google Scholar 

  18. Wang XJ, You JZ. Mechanism and kinetics of thermal decomposition of brivudine. Chin Pharm J. 2014;49(10):899–904.

    CAS  Google Scholar 

  19. Wang XJ, You JZ. Mechanism of thermal decomposition of zidovudine studied by TGA-FTIR. J Zhejiang Int Stud Univ. 2013;122:1–6.

    Article  Google Scholar 

  20. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA. General atomic and molecular electronic structure system. J Comput Chem. 1993;14:1347–63.

    Article  CAS  Google Scholar 

  21. Zhuravlev Y, Kravchenko NG, Obolonskaya OS. The electronic structure of alkali metal oxides. Russ J Phys Chem B. 2010;4(1):20–8.

    Article  Google Scholar 

  22. Alexeev Y, Mazanetz MP, Ichihara O, Fedorov DG. GAMESS as a free quantum-mechanical platform for drug research. Curr Top Med Chem. 2012;12(18):2013–33.

    Article  CAS  Google Scholar 

  23. Matos MAR, Sousa CCS, Morais VMF. Thermochemistry of chromone- and coumarin-3-carboxylic acid. J Therm Anal Calorim. 2010;100:519–26.

    Article  CAS  Google Scholar 

  24. Zayed MA, Hawash MF, Fahmey MA, El-Gizouli AMM. Investigation of ibuprofen drug using mass spectrometry, thermal analyses, and semi-empirical molecular orbital calculation. J Therm Anal Calorim. 2012;108:315–22.

    Article  CAS  Google Scholar 

  25. Keshavarz MH, Zohari N, Seyedsadjadi SA. Validation of improved simple method for prediction of activation energy of the thermal decomposition of energetic compounds. J Therm Anal Calorim. 2013;114:497–510.

    Article  CAS  Google Scholar 

  26. El-Gamel NEA, Hawash MF, Fahmey MA. Structure characterization and spectroscopic investigation of ciprofloxacin drug. J Therm Anal Calorim. 2012;108:253–62.

    Article  CAS  Google Scholar 

  27. Radchenko ED, Sheina GG, Smorygo NA, Blagoi YP. Experimental and theoretical studies of molecular structure features of cytosine. J Mol Struct. 1984;116:387–96.

    Article  CAS  Google Scholar 

  28. Alemán C. The keto–amino/enol tautomerism of cytosine in aqueous solution. A theoretical study using combined discrete/self-consistent reaction field models. Chem Phys. 2000;253:13–9.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Zhejiang Provincial Government of China (No. 2011C11032), and Zhejiang International Studies University (No. 07029005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Jie Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XJ., You, JZ. Study on the molecular structure and thermal stability of pyrimidine nucleoside analogs. J Therm Anal Calorim 120, 1009–1025 (2015). https://doi.org/10.1007/s10973-014-4362-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4362-6

Keywords

Navigation