Skip to main content
Log in

Thermal behavior study of pristine and modified halloysite nanotubes

A modern kinetic study

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Pristine halloysite nanotubes (HNTs) were studied by thermogravimetry (TG) up to 800 °C. Etching of alumina from inside the tube (causing a significant increase in tube lumen) was realized by treating the material with an acidic H2SO4 solution at 50 °C. Both materials were characterized by TG-FTIR techniques and their thermal behaviors were compared with that of kaolinite. The coupling of TG with FTIR enables to detect the gases evolved during the TG experiments, thus confirming that only pristine HNTs undergo dehydration with the loss of interlayer water molecules at around 245 °C, while dehydroxylation occurs in all these materials in close temperature ranges around 500 °C. TG runs at five different heating rates (2, 5, 10, 15 and 20 °C min−1), was carried out in the same experimental conditions used for the thermal analysis study with the aim to investigate dehydration and dehydroxylation kinetics using some isoconversional methods recommended by the ICTAC kinetic committee, and thermogravimetric data under a modulated rising temperature program. Finally, the results of the kinetic analysis were discussed and explained in terms of the strengths of the hydrogen bonds broken during these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Du M, Guo B, Jia D. Newly emerging applications of halloysite nanotubes: a review. Polym Int. 2010;59:574–95.

    CAS  Google Scholar 

  2. Price R, Gaber B, Lvov Y. In vitro release characteristics of tetracycline, khellin and nicotinamide adenine dinucleotide from halloysite; a cylindrical mineral for delivery of biologically active agents. J Microencapsul. 2001;18:713–23.

    Article  CAS  Google Scholar 

  3. Abdullayev E, Lvov Y. Clay nanotubes for corrosion inhibitor encapsulation: release control with end stoppers. J Mater Chem. 2010;20:6681–7.

    Article  CAS  Google Scholar 

  4. Abdullayev E, Lvov Y. Clay nanotubes for controlled release of protective agents—a review. J Nanosci Nanotechnol. 2011;11:10007–26.

    Article  CAS  Google Scholar 

  5. Liu M, Guo B, Du M, Cai X, Jia D. Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology. 2007;18:455703/1–9.

    CAS  Google Scholar 

  6. Abdullayev E, Lvov Y. Halloysite clay nanotubes as a ceramic “skeleton” for functional biopolymer composites with sustained drug release. J Mater Chem B. 2013;1:2894–903.

    Article  CAS  Google Scholar 

  7. Lvov Y, Price R, Gaber B. Thin film nanofabrication via layer-by-layer adsorption of tubule halloysite, spherical silica, proteins and polycations. Colloids Surf A. 2002;198–200:375–82.

    Article  Google Scholar 

  8. Liu M, Guo B, Du M, Jia D. Drying induced aggregation of halloysite nanotubes in polyvinyl alcohol/halloysite nanotubes solution and its effects on properties of composite films. Appl Phys A. 2007;88:391–5.

    Article  CAS  Google Scholar 

  9. Wei W, Abdullayev E, Hollister A, Mills D, Lvov Y. Clay nanotube/poly(methyl methacrylate) bone cement composite with sustained antibiotic release. Macromol Mater Eng. 2012;297:645–53.

    Article  CAS  Google Scholar 

  10. Cavallaro G, Lazzara G, Milioto S. Dispersions of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Extended physico-chemical study. Langmuir. 2011;27:1158–63.

    Article  CAS  Google Scholar 

  11. Veerabadran N, Price R, Lvov Y. Clay nanotubes for encapsulation and sustained release of drugs. NANO. 2007;2:215–22.

    Article  Google Scholar 

  12. Shchukin D, Price R, Lvov Y. Biomimetic synthesis of vaterite in the interior of clay nanotubules. Small. 2005;1:510–3.

    Article  CAS  Google Scholar 

  13. Shamsi MH, Geckeler KE. The first biopolymer-wrapped non carbon nanotubes. Nanotechnology. 2008;19:1–5.

    Article  Google Scholar 

  14. Joshi A, Abdullayev E, Vasiliev A, Volkova O, Lvov Y. Interfacial modification of clay nanotubes for the sustained release of corrosion inhibitors. Langmuir. 2013;29:7439–48.

    Article  CAS  Google Scholar 

  15. Suh Y, Kil D, Chung K, Abdullayev E, Lvov Y, Mongayt D. Natural nanocontainer for the controlled delivery of glycerol as a moisturizing agent. J Nanosci Nanotechnol. 2011;11:661–5.

    Article  CAS  Google Scholar 

  16. Abdullayev E, Joshi A, Wei W, Zhao Y, Lvov Y. Enlargement of halloysite clay nanotube lumen by selective etching of aluminium oxide. ACS Nano. 2012;6(8):72167226.

    Article  Google Scholar 

  17. Singh B. Why does halloysite roll?—a new model. Clays Clay Miner. 1996;44:191–6.

    Article  CAS  Google Scholar 

  18. Gasparini E, Tarantino SC, Ghigna P, Riccardi MP, Cedillo-González EI, Siligardi C, Zema M. Thermal dehydroxylation of kaolinite under isothermal conditions. Appl Clay Sci. 2013;80–81:417–25.

    Article  Google Scholar 

  19. Vecchio Ciprioti S, Catauro M. Synthesis, structural and thermal behavior study of four Ca-containing silicate gel-glasses: activation energies of their dehydration and dehydroxylation processes. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4729-3.

  20. Cheng H, Yang J, Liu Q, Frost RL. Thermogravimetric analysis–mass spectrometry (TG–MS) of selected Chinese kaolinites. Thermochim Acta. 2010;507–508:106–14.

    Article  Google Scholar 

  21. Ptácek P, Soukal F, Opravil T, Havlica J, Brandstetr J. The kinetic analysis of the thermal decomposition of kaolinite by DTG technique. Powder Technol. 2011;208:20–5.

    Article  Google Scholar 

  22. Ptácek P, Soukal F, Opravil T, Nosková M, Havlica J. The non-isothermal kinetics analysis of the thermal decomposition of kaolinite by effluent gas analysis technique. Powder Technol. 2010;203:272–6.

    Article  Google Scholar 

  23. Ptácek P, Kubatova D, Havlica J, Brandstetr J, Soukal F. Isothermal kinetic analysis of the thermal decomposition of kaolinite: the thermogravimetric study. Thermochim Acta. 2010;501:24–9.

    Article  Google Scholar 

  24. L’vov BV, Ugolkov VL. Kinetics and mechanism of dehydration of kaolinite, muscovite and talc analyzed thermogravimetrically by the third-law method. J Therm Anal Calorim. 2005;82:15–22.

    Article  Google Scholar 

  25. Sánchez FG, van Loon LR, Ginni T, Jakob A, Glaus MA, Diamond LW. Self-diffusion of water and its dependence on temperature and ionic strength in highly compacted montmorillonite, illite and kaolinite. Appl Geochem. 2008;23:3840–51.

    Article  Google Scholar 

  26. Klevtsov DP, Logvinenko VA, Zolotovskii BP, Krivoruchko OP, Buyanov RA. Kinetics of kaolinite dehydration and its dependence on mechanochemical activation. J Therm Anal. 1988;33:531–5.

    Article  Google Scholar 

  27. Adhikaria M, Majumdara MK, Pati AK. Thermal decomposition of vermiculites: kinetics of dehydration and dehydroxylation processes. Trans Indian Ceram Soc. 1983;42(5):124–7.

    Article  Google Scholar 

  28. Murray P, White J. Kinetics of clay dehydration. Clay Miner. 1955;2:255–64.

    Article  CAS  Google Scholar 

  29. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetic Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  30. Liu H, Chen T, Xie Q, Zou X, Qing C, Frost RL. Kinetic study of goethite dehydration and the effect of aluminium substitution on the dehydrate. Thermochim Acta. 2012;545:20–5.

    Article  CAS  Google Scholar 

  31. Brown ME, Dollimore D, Galwey AK. Reactions in the solid state. Comprehensive chemical kinetics, vol. 22. Amsterdam: Elsevier; 1980.

    Google Scholar 

  32. Sestak J. Thermophysical properties of solids. Comprehensive analytical chemistry, vol. 12D. Amsterdam: Elsevier; 1984.

    Google Scholar 

  33. Blaine RL, Hahn BK. Obtaining kinetic parameters by modulated thermogravimetry. J Therm Anal. 1998;54:695–704.

    Article  CAS  Google Scholar 

  34. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis Part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  35. Flynn JH, Wall LA. A quick direct method for the determination of activation energy from thermogravimetric data. J Polym Sci B Polym Lett. 1966;4(5):323–8.

    Article  CAS  Google Scholar 

  36. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  37. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6(24):639–42.

    Article  CAS  Google Scholar 

  38. Akahira T, Sunose T. Paper No. 246, 1969 Research Report, Trans. Joint Convention of Four Electrical Institutes. Chiba Inst Technol (Sci. Technol.) 1971. vol. 16, p.22–31.

  39. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  40. Lesnikovich AI, Levchik SV. Isoparametric kinetic relations for chemical transformations in condensed substances (Analytical survey). II. Reactions involving the participation of solid substances. J Therm Anal. 1985;30:677–702.

    Article  CAS  Google Scholar 

  41. Lesnikovich AI, Levchik SV. A method of finding invariant values of kinetic parameters. J Therm Anal. 1983;27:89–93.

    Article  CAS  Google Scholar 

  42. Pérez-Maqueda LA, Criado JM, Sánchez-Jiménez PE, Perejón A. Kinetic studies in solid state reactions by sample-controlled methods and advanced analysis procedures. J Therm Anal Calorim. 2013;113:1447–53.

    Article  Google Scholar 

  43. Pérez-Maqueda LA, Criado JM, Gotor FJ, Málek J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106:2862–8.

    Article  Google Scholar 

  44. Vyazovkin S, Wight CA. Kinetics in solids. Annu Rev Phys Chem. 1997;48:125–49.

    Article  CAS  Google Scholar 

  45. Simon P. Isoconversional methods. Fundamentals, meaning and application. J Therm Anal Calorim. 2004;74:123–32.

    Article  Google Scholar 

  46. Vyazovkin S. Evaluation of the activation energy of thermally stimulated solid-state reactions under an arbitrary variation of the temperature. J Comput Chem. 1997;18:393–402.

    Article  CAS  Google Scholar 

  47. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    Article  CAS  Google Scholar 

  48. Vyazovkin S, Dollimore D. Linear and non linear procedures in isoconversional computations of the activation energy of thermally induced reactions in solids. J Chem Inf Comput Sci. 1996;36:42–5.

    Article  CAS  Google Scholar 

  49. Budrugeac P, Segal E. Thermal analysis in the evaluation of thermal lifetime of solid polymeric materials. Thermochim Acta. 1992;211:131–6.

    Article  CAS  Google Scholar 

  50. Coats AW, Redfern JP. Kinetic parameters for thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  51. Garcia FJ, Rodríguez SG, Kalytta A, Reller A. Study of natural halloysite from the Dragon Mine, Utah (USA). Z Anorg Allg Chem. 2009;635(4–5):790–5.

    Article  Google Scholar 

  52. Badogiannis E, Kakali G, Tsivilis S. Metakaolin as supplementary cementitious material. Optimization of kaolin to metakaolin conversion. J Therm Anal Calorim. 2005;81:457–62.

    Article  CAS  Google Scholar 

  53. NIST Chemistry WebBook Standard Reference Database, http://webbook.nist.gov/chemistry.

  54. da Silveira Petruci JF, Fortes PR, Kokoric V, Wilk A, Raimundo IM Jr, Cardoso AA, Mizaikoff B. Monitoring of hydrogen sulfide via substrate-integrated hollow waveguide mid-infrared sensors in real-time. Analyst. 2014;139:198–203.

    Article  Google Scholar 

  55. Heide K, Foldvari M. High temperature mass spectrometric gas-release studies of kaolinite Al2[Si2O5(OH)4] decomposition. Thermochim Acta. 2006;446:106–12.

    Article  CAS  Google Scholar 

  56. Prado JR, Vyazovkin S. Activation energies of water vaporization from the bulk and from laponite, montmorillonite, and chitosan powders. Thermochim Acta. 2011;524:197–201.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from FIRB 2012, Clay nanotubes for designing eco-compatible smart materials, funded by the Italian Ministry of University and Research (Project No. RBFR12ETL5) and Dr. Giuseppe Lazzara and Prof. Peter Simon for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Vecchio Ciprioti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duce, C., Vecchio Ciprioti, S., Ghezzi, L. et al. Thermal behavior study of pristine and modified halloysite nanotubes. J Therm Anal Calorim 121, 1011–1019 (2015). https://doi.org/10.1007/s10973-015-4741-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4741-7

Keywords

Navigation