Skip to main content
Log in

Evaluation of CO2 gasification kinetics for low-rank Indian coals and biomass fuels

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Gasification of solid fuels such as coals, lignite and biomasses has been studied using isothermal and non-isothermal thermogravimetric analysis (TG) with CO2 as gasifying agent. Non-isothermal TG of three Indian coals (two bituminous and one sub-bituminous coal), one lignite and two biomass fuels (Casuarina and empty fruit bunches) at a constant heating rate of 20 °C min−1 in the temperature range from 25 to 1200 °C showed a clear separation of DTG peaks associated with pyrolysis and CO2 gasification. Based on these studies, isothermal TG experiments were conducted in the temperature range from 900 to 1100 °C for coals and from 800 to 1000 °C for biomass fuels. These results show that the CO2 gasification rate follows coal rank for the three coals and the lignite. The two biomasses have significantly higher reactivities than the three coals. The higher reactivity of one coal is attributed to the presence of calcium-containing minerals in its inorganic matter. The kinetic parameters for each fuel were extracted from the isothermal TG results using the volumetric reaction model for the coals and a zeroth-order model for biomass fuels. Biomass and lignite are found to have a much higher reactivity index and much lower conversion time than the three coals under identical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

w 0 :

Initial mass of the sample

w t :

Instantaneous mass of the sample

w f :

Final mass of the sample

x :

Fractional conversion of solid

r :

Reactivity or rate of reaction

W :

Mass of the sample

R s :

Reactivity index

t :

Instantaneous time during conversion

τ 0.5 :

Time required to reach 50 % conversion

k :

Arrhenius rate constant

E :

Activation energy

A :

Pre-exponential factor

k VM :

Rate constant from volumetric model

k GM :

Rate constant from grain model

k RPM :

Rate constant from random pore model

Ψ :

Structure parameter

x max :

Conversion at maximum reactivity

References

  1. Wall TF. Combustion processes for carbon capture. Proc Combust Inst. 2007;31:31–47.

    Article  CAS  Google Scholar 

  2. Seepana S, Jayanti S. Optimized enriched CO2 recycle oxy-fuel combustion for high ash coals. Fuel. 2012;102:32–40.

    Article  CAS  Google Scholar 

  3. Basavaraj RJ, Jayanti S. Syngas-fueled, chemical-looping combustion-based power plant lay-out for clean energy generation. Clean Technol Environ Policy. 2015;17(1):237–47.

    Article  CAS  Google Scholar 

  4. Yang H, Yan R, Chen H, Lee DH, Liang DT, Zheng C. Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Process Technol. 2006;87:935–42.

    Article  CAS  Google Scholar 

  5. Sumathi S, Chai SP, Mohamed AR. Utilization of oil palm as a source of renewable energy in Malaysia. Renew Sustain Energy Rev. 2008;12:2404–21.

    Article  CAS  Google Scholar 

  6. Chin KL, H’ng PS, Chai EW, Tey BT, Chin MJ, Paridah MT, Luqman AC, Maminski M. Fuel characteristics of solid biofuel derived from oil palm biomass and fast growing timber species in Malaysia. Bioenerg Res. 2013;6:75–82.

    Article  CAS  Google Scholar 

  7. Oliveira LE, Giordani DS, Paiva EM, De Castro HF, Da Silva MLCP. Kinetic and thermodynamic parameters of volatilization of biodiesel from babassu, palm oil and mineral diesel by thermogravimetric analysis (TGA). J Therm Anal Calorim. 2013;111:155–60.

    Article  CAS  Google Scholar 

  8. Yi Qiguo, Qi Fangjie, Cheng Gong, Zhang Yongguang, Xiao Bo, Zhiquan Hu, Liu Shiming, Cai Haiyan, Shan Xu. Thermogravimetric analysis of co-combustion of biomass and biochar. J Therm Anal Calorim. 2013;112:1475–9.

    Article  CAS  Google Scholar 

  9. Heinzel T, Siegle V, Spliethoff H, Hein KRG. Investigation of slagging in pulverized fuel co-combustion of biomass and coal at a pilot-scale test facility. Fuel Process Technol. 1998;54:109–25.

    Article  CAS  Google Scholar 

  10. Sarkar P, Sahu SG, Chakraborty N, Adak AK. Studies on potential utilization of rice husk char in blend with lignite for cocombustion application. J Therm Anal Calorim. 2014;115:1573–81.

    Article  CAS  Google Scholar 

  11. Niu Y, Zhu Y, Tan H, Wang X, Hui S, Du W. Experimental study on the coexistent dual slagging in biomass-fired furnaces: alkali- and silicate melt-induced slagging. Proc Combust Inst. 2014;35:2405–13.

    Article  CAS  Google Scholar 

  12. Wender I. Reactions of synthesis gas. Fuel Process Technol. 1996;48(3):276–84.

    Article  Google Scholar 

  13. Sims REH, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Bioresour Technol. 2010;101(6):1570–80.

    Article  CAS  Google Scholar 

  14. Prabu V, Jayanti S. Integration of underground coal gasification with a solid oxide fuel cell system for clean coal utilization. Int J Hydrogen Energy. 2012;37(2):1677–88.

    Article  CAS  Google Scholar 

  15. Lorenzo GD, Fragiacomo P. Energy analysis of an SOFC system fed by syngas. Energy Conv Manag. 2015;93:175–86.

    Article  CAS  Google Scholar 

  16. Laurendeau NM. Heterogeneous kinetics char gasification and combustion. Prog Energy Combust Sci. 1978;4:221–70.

    Article  CAS  Google Scholar 

  17. Simons GA. The role of pore structure in coal pyrolysis and gasification. Prog Energy Combust Sci. 1983;9:269–90.

    Article  CAS  Google Scholar 

  18. Takarada T, Tamai Y, Tomita A. Reactivities of 34 coals under steam gasification. Fuel. 1985;64:1438–42.

    Article  CAS  Google Scholar 

  19. Wall TF, Liu G-S, Wu H-W, Roberts DG, Benfell KE, Gupta S, Lucas JA, Harris DJ. The effects of pressure on coal reactions during pulverised coal combustion and gasification. Prog Energy Combust Sci. 2002;28:405–33.

    Article  CAS  Google Scholar 

  20. Tomaszewicz M, Łabojko G, Tomaszewicz G, Kotyczka-Morańska M. The kinetics of CO2 gasification of coal chars. J Therm Anal Calorim. 2013;113:1327–35.

    Article  CAS  Google Scholar 

  21. Chmielniak T, Sciazko M, Tomaszewicz G, Tomaszewicz M. Pressurized CO2-enhanced gasification of coal. J Therm Anal Calorim. 2014;117:1479–88.

    Article  CAS  Google Scholar 

  22. Ye DP, Agnew JB. Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies. Fuel. 1998;77:1209–19.

    Article  CAS  Google Scholar 

  23. Ahn DH, Gibbs BM, Ko KH, Kim JJ. Gasification kinetics of an Indonesian sub-bituminous coal-char with CO2 at elevated pressure. Fuel. 2001;80:1651–8.

    Article  CAS  Google Scholar 

  24. Shen DK, Gu S, Luo KH, Bridgwater AV, Fang MX. Kinetic study on thermal decomposition of woods in oxidative environment. Fuel. 2009;88:1024–30.

    Article  CAS  Google Scholar 

  25. Nowicki L, Antecka A, Bedyk T, Stolarek P, Ledakowicz S. The kinetics of gasification of char derived from sewage sludge. J Therm Anal Calorim. 2010;104:693–700.

    Article  CAS  Google Scholar 

  26. Malekshahian M, Hill JM. Effect of pyrolysis and CO2 gasification pressure on the surface area and pore size distribution of petroleum coke. Energy Fuels. 2011;25:5250–6.

    Article  CAS  Google Scholar 

  27. Yan Q, Huang J, Zhao J, Li C, Xia L, Fang Y. Investigation into the kinetics of pressurized steam gasification of chars with different coal ranks. J Therm Anal Calorim. 2013;116:519–27.

    Article  CAS  Google Scholar 

  28. Bai Y, Wang Y, Zhu S, Yan L, Li F, Xie K. Synergistic effect between CO2 and H2O on reactivity during coal chars gasification. Fuel. 2014;126:1–7.

    Article  CAS  Google Scholar 

  29. Bhatia SK, Gupta GR. Mathematical modeling of gas-solid reactions: effect of pore structure. Rev Chem Eng. 1992;8:177–258.

    Article  CAS  Google Scholar 

  30. McKee DW. Mechanisms of the alkali metal catalysed gasification of carbon. Fuel. 1983;62(2):170–5.

    Article  CAS  Google Scholar 

  31. Hauserman WB. High-yield hydrogen production by catalytic gasification of coal or biomass. Int J Hydrogen Energy. 1994;19(5):413–9.

    Article  CAS  Google Scholar 

  32. Perander M, DeMartini N, Brink A, Kramb J, Karstrom O, Hemming J, Moilanen A, Konttinen J, Hupa M. Catalytic effect of Ca and K on CO2 gasification of spruce wood char. Fuel. 2015;150(15):464–72.

    Article  CAS  Google Scholar 

  33. Everson RC, Neomagus HWJP, Kasaini H, Njapha D. Reaction kinetics of pulverized coal-chars derived from inertinite-rich coal discards: characterisation and combustion. Fuel. 2006;85:1067–75.

    Google Scholar 

  34. Fermoso J, Arias B, Pevida C, Plaza MG, Rubiera F, Pis JJ. Kinetic models comparison for steam gasification of different nature fuel chars. J Therm Anal Calorim. 2008;3:779–86.

    Article  Google Scholar 

  35. Saravanan V, Shivakumar R, Jayanti S, Seetharamu S. Evaluation of the effect of the concentration of CO2 on the overall reactivity of drop tube furnace derived Indian sub-bituminous coal chars during CO2/O2 combustion. Ind Eng Chem Res. 2011;50(23):12865–71.

    Article  CAS  Google Scholar 

  36. Lee T, Zubir ZA, Jamil FM, Matsumoto A, Yeoh F-Y. Combustion and pyrolysis of activated carbon fibre from oil palm empty fruit bunch fibre assisted through chemical activation with acid treatment. J Anal Appl Pyrolysis. 2014;110(1):408–18.

    Article  CAS  Google Scholar 

  37. Saravanan V, Studies on the combustion characteristics of high ash Indian coals with a view to retrofitting power plant boilers for operation in oxy-coal combustion mode. PhD Thesis, Department of Chemical Engineering, IIT Madras, Chennai, India, 2012.

Download references

Acknowledgements

The first author (VSN) is supported by the National Centre for Combustion Research and Development (NCCRD) which is funded by a grant from Department of Science and Technology (DST). The authors would like to thank NCCRD and the Department of Chemical Engineering, IIT Madras, for providing analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreenivas Jayanti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 626 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naidu, V.S., Aghalayam, P. & Jayanti, S. Evaluation of CO2 gasification kinetics for low-rank Indian coals and biomass fuels. J Therm Anal Calorim 123, 467–478 (2016). https://doi.org/10.1007/s10973-015-4930-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4930-4

Keywords

Navigation