Skip to main content
Log in

Study on the eutectic and post-eutectic reactions in LM13 aluminum alloy using cooling curve thermal analysis technique

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Effect of non-equilibrium solidification conditions on the eutectic and post-eutectic reactions temperature and percentage of the phases were investigated using computer-aided cooling curve thermal analysis. In addition, hardness, secondary dendrite arm spacing, and maximum pore size were studied at different cooling conditions. Cooling curves were determined by setting thermocouples in the center of the molds. Solid fractions were calculated by Newtonian baseline technique. Results showed that increasing the cooling rate shifted the temperature of post-eutectic reaction upward, except final reaction. Higher cooling rate increased eutectic percentage about 4 %, but reduced total percentage of post-eutectic phases. Additionally, increasing the cooling rate shortened the maximum porosity diameter and secondary dendrite arm spacing and increased the hardness of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Yamagata H. The science and technology of materials in automotive engines. Amsterdam: Elsevier; 2005.

    Book  Google Scholar 

  2. Maleki A, Niroumand B, Shafyei A. Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy. Mater Sci Eng, A. 2006;428(1):135–40.

    Article  Google Scholar 

  3. Ashiri R, Niroumand B, Karimzadeh F, Hamani M, Pouranvari M. Effect of casting process on microstructure and tribological behavior of LM13 alloy. J Alloys Compd. 2009;475(1):321–7.

    Article  CAS  Google Scholar 

  4. Krupiński M, Labisz K, Dobrzański L, Rdzawski Z. Derivative thermo-analysis application to assess the cooling rate influence on the microstructure of Al–Si alloy cast. J Achiev Mater Manuf Eng. 2010;38(2):115–22.

    Google Scholar 

  5. Dobrzański L, Maniara R, Sokołowski J, Kasprzak W. Effect of cooling rate on the solidification behavior of AC AlSi 7 Cu 2 alloy. J Mater Process Technol. 2007;191(1):317–20.

    Article  Google Scholar 

  6. Krupiñska B, Dobrzañski L, Rdzawski Z, Labisz K. Cooling rate influence on microstructure of the Zn–Al cast alloy. Arch Mater Sci. 2010;14:14.

    Google Scholar 

  7. Gowri S, Samuel F. Effect of Mg on the solidification behavior of two Al–Si–Cu–Fe–Mg (380) diecasting alloys. Trans Am Foundrym Soc 1993;101:611.

  8. Dutta B, Rettenmayr M. Effect of cooling rate on the solidification behaviour of Al–Fe–Si alloys. Mater Sci Eng A. 2000;283(1):218–24.

    Article  Google Scholar 

  9. Apelian D, Sigworth GK, Whaler K. Assessment of grain refinement and modification of Al–Si foundry alloys by thermal analysis. AFS Trans. 1984;92(2):297–307.

    CAS  Google Scholar 

  10. Gibbs JW, Mendez PF. Solid fraction measurement using equation-based cooling curve analysis. Scr Mater. 2008;58(8):699–702.

    Article  CAS  Google Scholar 

  11. Kou S. Welding metallurgy. Cambridge: Cambridge University Press; 1987.

    Google Scholar 

  12. Bakhtiyarov SI, Overfelt RA, Teodorescu SG. Fraction solid measurements on solidifying melt. J Fluids Eng. 2004;126(2):193–7.

    Article  CAS  Google Scholar 

  13. Kiuchi M, Sugiyama S. A new method to detect solid fractions of mushy/semi-solid metals and alloys. CIRP Ann Manuf Technol. 1994;43(1):271–4.

    Article  Google Scholar 

  14. Malekan M, Shabestari S. Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J Therm Anal Calorim. 2010;103(2):453–8.

    Article  Google Scholar 

  15. Emadi D, Whiting L, Nafisi S, Ghomashchi R. Applications of thermal analysis in quality control of solidification processes. J Therm Anal Calorim. 2005;81(1):235–42.

    Article  CAS  Google Scholar 

  16. Shabestari S, Malekan M. Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis. J Alloys Compd. 2010;492(1):134–42.

    Article  CAS  Google Scholar 

  17. Fras E, Kapturkiewicz W, Burbielko A, Lopez H. A new concept in thermal analysis of castings. Trans Am Foundrym Soc. 1993;101:505–11.

    CAS  Google Scholar 

  18. Rikhtegar F, Shabestari S. Investigation on solidification conditions in functionally Si-gradient Al alloys using simulation and cooling curve analysis methods. J Therm Anal Calorim. 2014;117(2):721–9.

    Article  CAS  Google Scholar 

  19. Shabestari SG, Gholizadeh R. Assessment of intermetallic compound formation during solidification of Al–Si piston alloys through thermal analysis technique. Mater Sci Technol. 2012;28(2):156–64.

    Article  CAS  Google Scholar 

  20. Backerud L, Chai G, Tamminen J. Solidification characteristics of aluminium alloys. Oslo: Skanaluminium; 1990.

    Google Scholar 

  21. Sen O, editor. Effect of modulus on the solidification characteristics and microstructure of 380 alloy. Transactions of the American Foundry Society and the One Hundred Seventh Annual Castings Congress; 2003.

  22. Gowri S. Comparison of thermal analysis parameters of 356 and 359 Alloys (94-29). Trans Am Foundrym Soc. 1994;102:503–8.

    CAS  Google Scholar 

  23. Mortensen A. On the rate of dendrite arm coarsening. MTA. 1991;22(2):569–74. doi:10.1007/BF02656824.

    Article  Google Scholar 

  24. Nafisi S, Ghomashchi R, Vali H. Eutectic nucleation in hypoeutectic Al–Si alloys. Mater Charact. 2008;59(10):1466–73.

    Article  CAS  Google Scholar 

  25. Eskin D, Du Q, Ruvalcaba D, Katgerman L. Experimental study of structure formation in binary Al–Cu alloys at different cooling rates. Mater Sci Eng A. 2005;405(1):1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Shabestari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, V.A., Shabestari, S.G. Study on the eutectic and post-eutectic reactions in LM13 aluminum alloy using cooling curve thermal analysis technique. J Therm Anal Calorim 124, 611–617 (2016). https://doi.org/10.1007/s10973-015-5163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5163-2

Keywords

Navigation