Skip to main content
Log in

Catalytic effect of Fe2O3, Mn2O3, and TiO2 nanoparticles on thermal decomposition of potassium nitrate

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetic and activation energies of thermal decomposition of KNO3 as an oxidizer in pyrotechnic compositions were studied in the presence of Fe2O3, Mn2O3, and TiO2 nanoparticles as catalysts, using thermogravimetric analysis under argon atmosphere at different heating rates (10, 15, and 20 K min−1). The prepared nanoparticles were characterized by XRD patterns, SEM images, and BET surface area analysis. For verification of data, the activation energies for thermal decomposition of KNO3 were calculated using non-isothermal isoconversional methods of KAS, OFW, and Friedman for different conversion fraction (α) values in the range 0.1–0.9. The activation energies were 201.6–208.2, 170.0–177.9, 173.9–181.6, and 213.0–223.8 kJ mol−1, respectively, in the absence and presence of 5 mol% of Fe2O3, Mn2O3, and TiO2. The results indicated that while Fe2O3 and Mn2O3 nanoparticles have catalytic effects, TiO2 nanoparticles show inhibitory effect on the thermal decomposition of KNO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Joshi CS, Shukla MR, Patel K, Joshi JS, Sahu O. Environmentally and economically feasibility manufacturing process of potassium nitrate for small scale industries: a review. Int Lett Chem Phys Astron. 2015;41:88–99.

    Article  Google Scholar 

  2. Pouretedal HR, Ravanbod M. Kinetic study of ignition of Mg/NaNO3 pyrotechnic using non-isothermal TG/DSC technique. J Therm Anal Calorim. 2015;119:2281–8.

    Article  CAS  Google Scholar 

  3. Conkling JA. Chemistry of pyrotechnics: basic principles and theory. New York: Marcel Dekker Inc.; 1985.

    Google Scholar 

  4. Redkar AS, Mujumdar VA, Singh SN. Study on magnesium-based pyrotechnic composition as a priming charge. Def Sci J. 1996;46:41–7.

    Article  CAS  Google Scholar 

  5. Shamsipur M, Pourmortazavi SM, Fathollahi M. Kinetic parameters of binary iron/oxidant pyrolants. J Energy Mater. 2012;30:97–106.

    Article  CAS  Google Scholar 

  6. Rajendran AG, Ammal RA, Kartha CB, Babu VV. Thermal studies on boron-based initiator formulation. Def Sci J. 1996;46:405–10.

    Article  Google Scholar 

  7. Hosseini SG, Eslami A. Thermoanalytical investigation of relative reactivity of some nitrate oxidants in tin-fueled pyrotechnic systems. J Therm Anal Calorim. 2014;101:1111–9.

    Article  Google Scholar 

  8. Rudloff WK, Freeman ES. Catalytic effect of metal oxides on thermal decomposition reactions. II. Catalytic effect of metal oxides on the thermal decomposition of potassium chlorate and potassium perchlorate as detected by thermal analysis methods. J Phys Chem. 1970;74:3317–24.

    Article  CAS  Google Scholar 

  9. Chen X, Zhang X, Feng M, Pan G, Lv H. The influences of catalysts in the thermal decomposition of barium nitrate as pyrotechnic oxidants. Appl Mech Mater. 2012;217–219:766–9.

    Article  Google Scholar 

  10. Hoshino Y, Utsunomiya T, Abe O. The thermal decomposition of sodium nitrate and effects of several oxides on the decomposition. Bull Chem Soc Jpn. 1981;54:1385–91.

    Article  CAS  Google Scholar 

  11. Li Z, Xiang X, Bai L, Li F. A nanocomposite precursor strategy to mixed-metal oxides with excellent catalytic activity for thermal decomposition of ammonium perchlorate. Appl Clay Sci. 2014;65–66:14–20.

    Google Scholar 

  12. Zhu YL, Huang H, Ren H, Jiao QJ. Effects of aluminum nanoparticles on thermal decomposition of ammonium perchlorate. J Korean Chem Soc. 2013;57:109–14.

    Article  CAS  Google Scholar 

  13. Vargeese AA, Muralidharan K. Kinetics and mechanism of hydrothermally prepared copper oxide nanorod catalyzed decomposition of ammonium nitrate. Appl Catal A. 2012;447–448:171–7.

    Article  Google Scholar 

  14. Nassar NN, Hassan A, Pereira-Almao P. Thermogravimetric studies on catalytic effect of metal oxide nanoparticles on asphaltene pyrolysis under inert conditions. J Therm Anal Calorim. 2012;110:1327–32.

    Article  CAS  Google Scholar 

  15. Martins S, Fernandes JB, Mojumdar SC. Catalysed thermal decomposition of KClO3 and carbon gasification. J Therm Anal Calorim. 2015;119:831–5.

    Article  CAS  Google Scholar 

  16. Kapoor IPS, Srivastava P, Singh G. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate. Propellants Explos Pyrotech. 2009;34:351–6.

    Article  CAS  Google Scholar 

  17. Mahinroosta M. Catalytic effect of commercial nano-CuO and nano-Fe2O3 on thermal decomposition of ammonium perchlorate. J Nanostruct Chem. 2013;3:1–6.

    Google Scholar 

  18. Chaturvedi S, Dave PN. A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate. J Saudi Chem Soc. 2013;17:135–49.

    Article  CAS  Google Scholar 

  19. Zhang Y, Kshirsagar G, Ellison JE. Catalytic effects of metal oxides on the thermal decomposition of sodium chlorate. Thermochim Acta. 1993;228:147–54.

    Article  CAS  Google Scholar 

  20. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  21. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  22. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  23. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand Part A. 1966;70:487–523.

    Article  CAS  Google Scholar 

  24. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 1964;6:183–95.

    Article  Google Scholar 

  25. Udupa MR. Thermal decomposition of potassium nitrate in the presence of chromium (III) oxide. Thermochim Acta. 1976;16:231–5.

    Article  CAS  Google Scholar 

  26. Azhagurajan A, Selvakumar N, Thanulingam TL. Thermal and sensitivity analysis of nano aluminium powder for firework application. J Therm Anal Calorim. 2011;105:259–67.

    Article  CAS  Google Scholar 

  27. Pouretedal HR, Tavakkoli M. Photodegradation of para-nitrophenol catalyzed by Fe2O3/FeS nanocomposite. Desalination Water Treat. 2013;51:4744–9.

    Article  CAS  Google Scholar 

  28. Kumar H, Sangwan M, Sangwan P. Synthesis and characterization of MnO2 Nanoparticles using co-precipitation technique. Int J Chem Chem Eng. 2013;3:155–60.

    Google Scholar 

  29. Carneiro JO, Azevedo S, Fernandes F, Freitas E, Pereira M, Tavares CJ, Lanceros-Méndez S, Teixeira V. Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. J Mater Sci. 2014;49:7476–88.

    Article  CAS  Google Scholar 

  30. Thamaphat K, Limsuwan P, Ngotawornchai B. Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J (Nat Sci). 2008;42:357–61.

    Google Scholar 

  31. Wang ZH, Geng DY, Hu WJ, Ren WJ, Zhang ZD. Magnetic properties and exchange bias in Mn2O3/Mn3O4 nanoclusters. J Appl Phys. 2009;105:07A315/1–3.

    CAS  Google Scholar 

  32. Maslen EN, Streltsov VA, Streltsova NR, Ishizawa N. Synchrotron X-ray study of the electron density in α-Fe2O3. Acta Crystallogr B. 1994;50:435–41.

    Article  Google Scholar 

  33. Arcon I, Mozetic M, Kodre A. XAS study of oxygen plasma-treated micronized iron oxide pigments. Vacuum. 2005;80:178–83.

    Article  CAS  Google Scholar 

  34. Scherrer P. Bestimmung der grosse und der inneren struktur von kolloidteilchen mittel rontgenstrahlen, nachrichten von der gesellschaft der wissenschaften, Gottingen. Math Phys Kl. 1918;2:98–100.

    Google Scholar 

  35. Krishnan KRR, Ammal RA, Hariharanath B, Rajendran AG, Kartha CB. Addition of RDX/HMX on the ignition behavior of boron-potassium nitrate pyrotechnic charge. Def Sci J. 2006;56:329–38.

    Article  CAS  Google Scholar 

  36. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  37. Pouretedal HR, Ebadpour R. Application of non-isothermal thermogravimetric method to interpret the decomposition kinetics of NaNO3, KNO3, and KClO4. Int J Thermophys. 2014;35:942–51.

    Article  CAS  Google Scholar 

  38. Nayak H, Ashish K. Catalyst effect of transition metal nano oxides on the decomposition of lanthanum oxalate hydrate: a thermogravimetric study. Int J Sci Res. 2014;3:381–8.

    Google Scholar 

  39. Zhang Y, Kshirsagar G, Ellison JE, Cannon JC. Catalytic effects of metal oxides on the decomposition of potassium perchlorate. Thermochim Acta. 1996;278:119–27.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the research committee of Malek-Ashtar University of Technology (MUT) and Professor M. K. Amini for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Pouretedal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravanbod, M., Pouretedal, H.R. Catalytic effect of Fe2O3, Mn2O3, and TiO2 nanoparticles on thermal decomposition of potassium nitrate. J Therm Anal Calorim 124, 1091–1098 (2016). https://doi.org/10.1007/s10973-015-5167-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5167-y

Keywords

Navigation