Skip to main content
Log in

Preparation, flame retardancy and thermal degradation behaviors of polyacrylonitrile fibers modified with diethylenetriamine and zinc ions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A kind of flame-retardant polyacrylonitrile fiber was prepared successfully by the modification with diethylenetriamine and zinc ions (Zn2+). The chemical, aggregation and morphological structures of the aminated fibers were studied by Fourier transform infrared (FTIR) spectra, X-ray diffraction and scanning electron microscope (SEM). Meanwhile, mechanical and adsorption properties were investigated by a tensile tester and atomic absorption spectrometry. The flame retardancy of the modified fibers was significantly improved after modification. And the thermal degradation behaviors and flame retardancy mechanisms were studied in detail. The microscale combustion calorimeter and TG-FTIR results showed that the modified fibers decomposed less combustible gases and more non-combustible gases comparing the original fibers. And thermogravimetric analysis and SEM tests revealed that Zn2+ would stabilize the main chains and promote formation of compact char layers. And differential scanning calorimetry tests indicated that Zn2+ would inhibit the cyclization exothermic process. Results showed that the combination of gas phase and condensed phase mechanisms optimized the flame retardancy performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zhang J, Hall ME. The flammability of polyacrylonitrile and its copolymers I. The flammability assessment using pressed powdered polymer samples. J Fire Sci. 1993;11:442–56.

    Article  Google Scholar 

  2. Nametz RC. Flame-retarding textile fibers. Ind Eng Chem. 1970;62:41–53.

    Article  CAS  Google Scholar 

  3. Ichibori K, Matsumoto T, Kanbara Y. Flame-retarded composite fiber. US Patent 5,208,105; 1993.

  4. Tsai JS. The effect of flame-retardants on the properties of acrylic and modacrylic fibres. J Mater Sci. 1993;28:1161–7.

    Article  CAS  Google Scholar 

  5. Wade BE. Modacrylic copolymer composition. US Patent 6,048,955; 2000.

  6. Lu SY, Hamerton I. Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci. 2002;27:1661–712.

    Article  CAS  Google Scholar 

  7. Bajaj P, Agrawal AK, Dhand A, Kasturia N, Hansraj. Flame retardation of acrylic fibers: an overview. J Macromol Sci-Polym Rev. 2000;40:309–37.

    Article  Google Scholar 

  8. Hearle JW. High performance fibers. UK: Wood Head Publishing Ltd.; 2001.

    Book  Google Scholar 

  9. Zhang S, Horrocks AR. A review of flame retardant polypropylene fibres. Prog Polym Sci. 2003;28:1517–38.

    Article  CAS  Google Scholar 

  10. Chen XC, Ding YP, Tang T. Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene. Polym Int. 2005;54:904–8.

    Article  CAS  Google Scholar 

  11. Zhang JJ, Ji Q, Wang FJ, Tan LW, Xia YZ. Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres. Polym Degrad Stab. 2012;97:1034–40.

    Article  CAS  Google Scholar 

  12. Xu JZ, Tian CM, Ma ZG, Gao M, Guo HZ, Yao ZH. Study on the thermal behaviour and flammability of the modified polyacrylonitrile fibers. J Therm Anal Calorim. 2000;63:501–6.

    Article  Google Scholar 

  13. Bajaj P, Kumari S. Modification of acrylic fibers: an overview. J Macromol Sci Rev Macromol Chem. 1987;27:181–217.

    Article  Google Scholar 

  14. Ieno M, Nishida R. Fiber and a fiber structure having a high flame-retarding property and high moisture-absorptive property. US Patent 7,696,283; 2010.

  15. Zharkova MA, Kudryavtsev GI, Khudoshev IF, Romanova TA. Thermomechanical and chemical properties of cross-linked polyacrylonitrile fibres. Fibre Chem. 1969;1:191–4.

    Article  Google Scholar 

  16. Liu RX, Zhang BW, Tang HX. Synthesis and characterization of poly (acrylaminophosphonic-carboxyl-hydrazide) chelating fibre. React Funct Polym. 1999;39:71–81.

    Article  CAS  Google Scholar 

  17. Ko YG, Choi US, Kim TY, Ahn DJ, Chun YJ. FT-IR and isotherm study on anion adsorption onto novel chelating fibers. Macromol Rapid Commun. 2002;23:535–9.

    Article  CAS  Google Scholar 

  18. Deng SB, Bai RB, Chen JP. Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir. 2003;19:5058–64.

    Article  CAS  Google Scholar 

  19. Zhang LH, Zhang XS, Li PP, Zhang WQ. Effective Cd2+ chelating fiber based on polyacrylonitrile. React Funct Polym. 2009;69:48–54.

    Article  CAS  Google Scholar 

  20. Zeng XM, Hu J, Zhao JX, Zhang YW, Pan D. Investigating the jet stretch in the wet spinning of PAN fiber. J Appl Polym Sci. 2007;106:2267–73.

    Article  CAS  Google Scholar 

  21. Sobhanipour P, Cheraghi R, Volinsky AA. Thermoporometry study of coagulation bath temperature effect on polyacrylonitrile fibers morphology. Thermochim Acta. 2011;518:101–6.

    Article  CAS  Google Scholar 

  22. Dong XG, Wang CG, Juan C. Study on the coagulation process of polyacrylonitrile nascent fibers during wet-spinning. Polym Bull. 2007;58:1005–12.

    Article  CAS  Google Scholar 

  23. Ko TH, Lin CH, Ting HY. Structural changes and molecular motion of polyacrylonitrile fibers during pyrolysis. J Appl Polym Sci. 1989;37:553–66.

    Article  CAS  Google Scholar 

  24. Cai YB, Gao DW, Wei QF, Gu HL, Zhou S, Huang FL, Song L, Hu Y, Gao WD. Effects of ferric chloride on structure, surface morphology and combustion property of electrospun polyacrylonitrile composite nanofibers. Fiber Polym. 2011;12:145–50.

    Article  CAS  Google Scholar 

  25. Doğan M, Erdoğan S, Bayramlı E. Mechanical, thermal, and fire retardant properties of poly (ethylene terephthalate) fiber containing zinc phosphinate and organo-modified clay. J Therm Anal Calorim. 2013;112:871–6.

    Article  Google Scholar 

  26. Guin T, Krecker M, Milhorn A, Grunlan JC. Maintaining hand and improving fire resistance of cotton fabric through ultrasonication rinsing of multilayer nanocoating. Cellulose. 2014;21:3023–30.

    Article  CAS  Google Scholar 

  27. Yang HY, Song L, Tai QL, Wang X, Yu B, Yuan Y, Hu Y, Yuen RKK. Comparative study on the flame retarded efficiency of melamine phosphate, melamine phosphite and melamine hypophosphite on poly (butylene succinate) composites. Polym Degrad Stab. 2014;105:248–56.

    Article  CAS  Google Scholar 

  28. Wang JS, Liu Y, Zhao HB, Liu J, Wang DY, Song YP, Wang YZ. Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polym Degrad Stab. 2009;94:625–31.

    Article  CAS  Google Scholar 

  29. Zhang WX, Wang YZ, Sun CF. Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning. J Polym Res. 2007;14:467–74.

    Article  CAS  Google Scholar 

  30. Shoushtari AM, Zargaran M, Abdouss M. Preparation and characterization of high efficiency ion-exchange crosslinked acrylic fibers. J Appl Polym Sci. 2006;101:2202–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The device support for measurements and characterizations was mainly from State Key Laboratory of Polymer Materials and Engineering (Sichuan University) and Analysis and Testing Center (Sichuan University). Authors wish to thank all the testers for their help and suggestions. Authors would also like to thank College of Chemistry, Chemical Engineering and Materials Science of Soochow University for the TG-FTIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengqing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Zhou, W., Zhao, X. et al. Preparation, flame retardancy and thermal degradation behaviors of polyacrylonitrile fibers modified with diethylenetriamine and zinc ions. J Therm Anal Calorim 124, 719–728 (2016). https://doi.org/10.1007/s10973-015-5180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5180-1

Keywords

Navigation