Skip to main content
Log in

Effect of solid oxidizers on the thermal oxidation and combustion performance of amorphous boron

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Amorphous boron is usually employed as the most important fuel of boron-based fuel-rich propellants, and NH4ClO4 (AP), cyclotetramethylenetetranitramine (HMX), KClO4 and KNO3 are the solid oxidizers of most used in solid propellants. The mixtures of boron and different solid oxidizers with mass ratio 1:1 were prepared in this paper, and the effect of these oxidizers on the thermal oxidation and combustion performance of amorphous boron was studied by simultaneous thermogravimetry–differential scanning calorimeter–Fourier transform infrared spectroscopy and CO2 laser ignition experiments. The experimental results show that the main reactions during the heating process of B/AP and B/HMX samples are the decomposition of oxidizers, and the decomposition process of oxidizers rather than the decomposition temperature is affected by amorphous boron; boron could react with KClO4 and KNO3 violently with the release of large amounts of heat, and then both of the oxidizers, especially KClO4, have positive effect on the oxidation and combustion performance of amorphous boron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kuo KK, Summerfield M. Fundamentals of solid-propellant combustion. New York: American Institute of Aeronautics and Astronautics; 1984.

    Book  Google Scholar 

  2. Gany A, Timnat YM. Advantages and drawbacks of boron-fueled propulsion. Acta Astronaut. 1993;29(3):181–7. doi:10.1016/0094-5765(93)90047-Z.

    Article  Google Scholar 

  3. Besser HL, Strecker R. Overview of boron ducted rocket development. Int J Energ Mater Chem Propuls. 1993;2(1–6):133–78. doi:10.1615/IntJEnergeticMaterialsChemProp.v2.i1-6.60.

    Google Scholar 

  4. Buchner E, Langel G. Elementary boron as a propellant component in ducted rockets: thermodynamic study. Z Flugwissensch. 1976;24(5):275–8.

    Google Scholar 

  5. Fry RS. A century of ramjet propulsion technology evolution. J Propuls Power. 2004;20(1):27–58. doi:10.2514/1.9178.

    Article  Google Scholar 

  6. Pang WQ, Fan XZ, Zhang W, Xu HX, Li JZ, Li YH, et al. Application of amorphous boron granulated with hydroxyl-terminated polybutadiene in fuel-rich solid propellant. Propellant Explos Pyrotech. 2011;36(4):360–6. doi:10.1002/prep.200900112.

    Article  CAS  Google Scholar 

  7. Liu L, He G, Wang Y. Thermal reaction characteristics of the boron used in the fuel-rich propellant. J Therm Anal Calorim. 2013;114(3):1057–68.

    Article  CAS  Google Scholar 

  8. Hussmann B, Pfitzner M. Extended combustion model for single boron particles—part I: theory. Combust Flame. 2010;157(4):803–21. doi:10.1016/j.combustflame.2009.12.010.

    Article  CAS  Google Scholar 

  9. Hussmann B, Pfitzner M. Extended combustion model for single boron particles—part II: validation. Combust Flame. 2010;157(4):822–33. doi:10.1016/j.combustflame.2009.12.009.

    Article  CAS  Google Scholar 

  10. Foelsche RO, Burton RL, Krier H. Boron particle ignition and combustion at 30-150 ATM. Combust Flame. 1999;117(1–2):32–58. doi:10.1016/S0010-2180(98)00080-7.

    Article  CAS  Google Scholar 

  11. Yeh CL, Kuo KK. Ignition and combustion of boron particles. Prog Energy Combust. 1996;22(6):511–41. doi:10.1016/S0360-1285(96)00012-3.

    Article  CAS  Google Scholar 

  12. Liu L, He G, Wang Y. Effect of oxidizer on the combustion performance of boron-based fuel-rich propellant. J Propuls Power. 2014;30(2):285–9.

    Article  Google Scholar 

  13. Kubota N. Energetics of HMX-based composite modified double-base propellant combustion. J Propuls Power. 1999;15(6):759–62.

    Article  CAS  Google Scholar 

  14. Muthiah R, Varghese T, Rao SS, Ninan K, Krishnamurthy V. Realisation of an eco-friendly solid propellant based on HTPB-HMX-AP system for launch vehicle applications. Int J Energ Mater Chem Propul. 1997;4(1–6):134–9.

    Google Scholar 

  15. Sivan J, Haas Y. Spectroscopic characterization of B/KNO3 diode-laser induced combustion. J Phys Chem A. 2013;117(46):11808–14.

    Article  CAS  Google Scholar 

  16. Liu L, He G, Wang Y, Liu P. Effect of catocene on the thermal decomposition of ammonium perchlorate and octogen. J Therm Anal Calorim. 2014;117(2):621–8.

    Article  CAS  Google Scholar 

  17. Boldyrev V. Thermal decomposition of ammonium perchlorate. Thermochim Acta. 2006;443(1):1–36.

    Article  CAS  Google Scholar 

  18. Jacobs P, Pearson G. Mechanism of the decomposition of ammonium perchlorate. Combust Flame. 1969;13(4):419–30.

    Article  CAS  Google Scholar 

  19. Lee J-S, Hsu C-K, Jaw K-S. The thermal properties of KClO 4 with different particle size. Thermochim Acta. 2001;367:381–5.

    Article  Google Scholar 

  20. Miyata K, editor. Combustion of boron-pyrotechnics. AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 37th, Salt Lake City, UT; 2001.

  21. El-Awad A. Catalytic effect of some chromites on the thermal decomposition of KClO4. Mechanistic and non-isothermal kinetic studies. J Therm Anal Calorim. 2000;61(1):197–208.

    Article  CAS  Google Scholar 

  22. Spalding MJ, Krier H, Burton R. Boron suboxides measured during ignition and combustion of boron in shocked Ar/F/O 2 and Ar/N 2/O 2 mixtures. Combust Flame. 2000;120(1):200–10.

    Article  CAS  Google Scholar 

  23. Ao W, Yang W, Wang Y, Zhou J, Liu J, Cen K. Ignition and combustion of boron particles at one to ten standard atmosphere. J Propuls Power. 2014;30(3):760–4.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-lin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Pj., Liu, Ll. & He, Gq. Effect of solid oxidizers on the thermal oxidation and combustion performance of amorphous boron. J Therm Anal Calorim 124, 1587–1593 (2016). https://doi.org/10.1007/s10973-016-5252-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5252-x

Keywords

Navigation