Skip to main content
Log in

Experimental investigation on the oxy-fuel co-combustion behavior of anthracite coal and spent coffee grounds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The combustion behaviors of anthracite coal/spent coffee grounds under oxy-fuel condition were assessed by a thermal analysis technique. At heating rates of 10–40 K min−1, the ignition temperatures and burnout temperatures of all anthracite coal/spent coffee grounds blends decreased with increasing the blending ratios of biomass or oxygen contents in O2/CO2 atmospheres. The ignition temperatures of all samples at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. In 30 % O2/70 % CO2 atmosphere, the average ignition and comprehensive performance indices of anthracite coal/spent coffee grounds at 40 K min−1 were about 4 times and 18 times more than that at 10 K min−1, respectively. At heating rate of 20 K min−1, the comprehensive performance indices of all samples in 30 % O2/70 % CO2 were very close to those in air. In air and O2/CO2 (21–40 % oxygen contents) atmospheres, the activation energies of release and combustion for volatile matters in the blends ranged from 33.66 to 147.32 kJ mol−1. Activation energies of char combustion in the blends ranged from 21.06 to 109.49 kJ mol−1. There were more significant synergistic effects between anthracite coal and spent coffee grounds during co-combustion in air and oxy-fuel atmospheres at 40 K min−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

a :

Conversion degree

A :

Pre-exponential (s−1)

D :

Combustion index

E a :

Apparent activation energy (J mol−1)

R :

Universal gas constant (J mol−1 K−1)

T :

Temperature (K/°C)

β :

Heating rate (K min−1)

b:

Burnout

c:

Comprehensive performance

i:

Ignition

m:

Mean

max:

Maximum

p:

Peak

References

  1. Gómez-de la Cruz FJ, Cruz-Peragón F, Casanova-Peláez PJ, Palomar-Carnicero JM. A vital stage in the large-scale production of biofuels from spent coffee grounds: the drying kinetics. Fuel Process Technol. 2015;130:188–96. doi:10.1016/j.fuproc.2014.10.012.

    Article  Google Scholar 

  2. Jeguirim M, Limousy L, Dutournie P. Pyrolysis kinetics and physicochemical properties of agropellets produced from spent ground coffee blended with conventional biomass. Chem Eng Res Des. 2014;92(10):1876–82. doi:10.1016/j.cherd.2014.04.018.

    Article  CAS  Google Scholar 

  3. Stephenson PL. Mathematical modelling of semi-anthracite combustion in a single burner furnace. Fuel. 2003;82(15–17):2069–73. doi:10.1016/S0016-2361(03)00158-3.

    Article  CAS  Google Scholar 

  4. Ouyang Z, Zhu J, Lu Q. Experimental study on preheating and combustion characteristics of pulverized anthracite coal. Fuel. 2013;113:122–7. doi:10.1016/j.fuel.2013.05.063.

    Article  CAS  Google Scholar 

  5. Lee D-W, Bae J-S, Lee Y-J, Park S-J, Hong J-C, Lee B-H, et al. Two-in-one fuel combining sugar cane with low rank coal and its CO2 reduction effects in pulverized-coal power plants. Environ Sci Technol. 2013;47(3):1704–10. doi:10.1021/es303341j.

    CAS  Google Scholar 

  6. Pang CH, Hewakandamby B, Wu T, Lester E. An automated ash fusion test for characterisation of the behaviour of ashes from biomass and coal at elevated temperatures. Fuel. 2013;103:454–66.

    Article  CAS  Google Scholar 

  7. Sahu SG, Chakraborty N, Sarkar P. Coal–biomass co-combustion: an overview. Renew Sustain Energy Rev. 2014;39:575–86. doi:10.1016/j.rser.2014.07.106.

    Article  CAS  Google Scholar 

  8. Bejarano PA, Levendis YA. Single-coal-particle combustion in O2/N2 and O2/CO2 environments. Combust Flame. 2008;153(1–2):270–87. doi:10.1016/j.combustflame.2007.10.022.

    Article  CAS  Google Scholar 

  9. Liu H, Zailani R, Gibbs BM. Comparisons of pulverized coal combustion in air and in mixtures of O2/CO2. Fuel. 2005;84(7–8):833–40. doi:10.1016/j.fuel.2004.11.018.

    Article  CAS  Google Scholar 

  10. Riaza J, Álvarez L, Gil MV, Pevida C, Pis JJ, Rubiera F. Ignition and NO emissions of coal and biomass blends under different oxy-fuel atmospheres. Energy Procedia. 2013;37:1405–12. doi:10.1016/j.egypro.2013.06.016.

    Article  CAS  Google Scholar 

  11. Arias B, Pevida C, Rubiera F, Pis JJ. Effect of biomass blending on coal ignition and burnout during oxy-fuel combustion. Fuel. 2008;87(12):2753–9. doi:10.1016/j.fuel.2008.01.020.

    Article  CAS  Google Scholar 

  12. Moroń W, Rybak W. NOx and SO2 emissions of coals, biomass and their blends under different oxy-fuel atmospheres. Atmos Environ. 2015;116:65–71. doi:10.1016/j.atmosenv.2015.06.013.

    Article  Google Scholar 

  13. Farrow TS, Sun C, Snape CE. Impact of biomass char on coal char burn-out under air and oxy-fuel conditions. Fuel. 2013;114:128–34. doi:10.1016/j.fuel.2012.07.073.

    Article  CAS  Google Scholar 

  14. Cai J, Liu R. Research on water evaporation in the process of biomass pyrolysis. Energy Fuels. 2007;21(6):3695–7. doi:10.1021/ef700442n.

    Article  CAS  Google Scholar 

  15. Wang G, Zhang J, Shao J, Ren S. Characterisation and model fitting kinetic analysis of coal/biomass co-combustion. Thermochim Acta. 2014;591:68–74. doi:10.1016/j.tca.2014.07.019.

    Article  CAS  Google Scholar 

  16. Li XG, Lv Y, Ma BG, Jian SW, Tan HB. Thermogravimetric investigation on co-combustion characteristics of tobacco residue and high-ash anthracite coal. Bioresour Technol. 2011;102(20):9783–7. doi:10.1016/j.biortech.2011.07.117.

    Article  CAS  Google Scholar 

  17. Liu X, Chen M, Wei Y. Kinetics based on two-stage scheme for co-combustion of herbaceous biomass and bituminous coal. Fuel. 2015;143:577–85. doi:10.1016/j.fuel.2014.11.085.

    Article  CAS  Google Scholar 

  18. Zhang K, Zhang K, Cao Y, Pan W. Co-combustion characteristics and blending optimization of tobacco stem and high-sulfur bituminous coal based on thermogravimetric and mass spectrometry analyses. Bioresour Technol. 2013;131:325–32. doi:10.1016/j.biortech.2012.12.163.

    Article  CAS  Google Scholar 

  19. Irfan MF, Arami-Niya A, Chakrabarti MH, Daud WMAW, Usman MR. Kinetics of gasification of coal, biomass and their blends in air (N2/O2) and different oxy-fuel (O2/CO2) atmospheres. Energy. 2012;37(1):665–72. doi:10.1016/j.energy.2011.10.032.

    Article  CAS  Google Scholar 

  20. Cahyadi AS, Nugroho YS. Predicting behavior of coal ignition in oxy-fuel combustion. Energy Procedia. 2013;37:1423–34. doi:10.1016/j.egypro.2013.06.018.

    Article  CAS  Google Scholar 

  21. Ding L, Zhang Y, Wang Z, Huang J, Fang Y. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char. Bioresour Technol. 2014;173:11–20. doi:10.1016/j.biortech.2014.09.007.

    Article  CAS  Google Scholar 

  22. Yi B, Zhang L, Mao Z, Huang F, Zheng C. Effect of the particle size on combustion characteristics of pulverized coal in an O2/CO2 atmosphere. Fuel Process Technol. 2014;128:17–27. doi:10.1016/j.fuproc.2014.06.025.

    Article  CAS  Google Scholar 

  23. Yuzbasi NS, Selçuk N. Air and oxy-fuel combustion behaviour of petcoke/lignite blends. Fuel. 2012;92(1):137–44. doi:10.1016/j.fuel.2011.08.026.

    Article  CAS  Google Scholar 

  24. Shaddix CR, Molina A. Particle imaging of ignition and devolatilization of pulverized coal during oxy-fuel combustion. Proc Combust Inst. 2009;32(2):2091–8. doi:10.1016/j.proci.2008.06.157.

    Article  CAS  Google Scholar 

  25. Li Q, Zhao C, Chen X, Wu W, Li Y. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis. J Anal Appl Pyrol. 2009;85(1–2):521–8. doi:10.1016/j.jaap.2008.10.018.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under No. 51376017 and the Fundamental Research Funds of China for the Central Universities under No. 2015YJS133.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meiqian Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Y., Chen, M., Niu, S. et al. Experimental investigation on the oxy-fuel co-combustion behavior of anthracite coal and spent coffee grounds. J Therm Anal Calorim 124, 1651–1660 (2016). https://doi.org/10.1007/s10973-016-5269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5269-1

Keywords

Navigation