Skip to main content
Log in

Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Magnetic iron oxides were prepared by precipitation of Fe(II) hydroxide using different precipitation agents: ammonia, benzylamine and sodium hydroxide, followed by oxidation with the oxygen dissolved in water. Thermal analysis, coupled with FTIR spectroscopy, has evidenced the formation of a mixture of magnetite and maghemite, with a higher content of magnetite in case of the powder synthesized with benzylamine. The stability of magnetite at oxidation by air during storage at room temperature and 60 °C was investigated by means of TG/DSC simultaneous thermal analysis, FTIR spectroscopy and X-ray diffractometry. Thermal analysis evidenced an exothermic process with mass gain in temperature range 100–190 °C, corresponding to magnetite oxidation process, but due to the superposition of other processes it could not offer quantitative information. FTIR spectroscopy has provided, especially through the first and second derivatives of FTIR spectra, the most valuable information regarding the evolution of magnetite to maghemite, due to their different characteristic bands. XRD technique has evidenced a slight shift of the main diffraction peaks at higher 2-theta values during the evolution of magnetite to maghemite. According to thermal analysis data, the powder synthesized with ammonia was completely oxidized after 15 days, while the other two powders, synthesized with benzylamine and sodium hydroxide, were completely oxidized after 110 days of keeping in air at room temperature. For a temperature of 60 °C, the oxidation was much faster; the oxidation process of the powder synthesized with benzylamine disappeared from TG/DSC curves after 1 day. All final powders were formed from nanoparticles with diameters up to 25 nm, with magnetic properties characteristic to nanometric maghemite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Wahajuddin M, Arora S. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine. 2012;7:3445–71.

    Article  CAS  Google Scholar 

  2. Liu XM, Kim JK. Solvothermal synthesis and magnetic properties of magnetite nanoplatelets. Mater Lett. 2009;63:428–30.

    Article  CAS  Google Scholar 

  3. Li YS, Church JS, Woodhead AL, Moussa F. Preparation and characterization of silica coated iron oxide magnetic nano-particles. Spectrochim Acta A. 2010;76:484–9.

    Article  Google Scholar 

  4. Shariful-Islam MD, Kusumoto Y, Kurawaki J, Abdulla-al-Mamun MD, Manaka H. A comparative study on heat dissipation, morphological and magnetic properties of hyperthermia suitable nanoparticles prepared by co-precipitation and hydrothermal methods. Bull Mater Sci. 2012;35(7):1047–53.

    Article  Google Scholar 

  5. Jing-San Xu, Zhu Ying-Jie. γ-Fe2O3 and Fe3O4 magnetic hierarchically nanostructured hollow microspheres: preparation, formation mechanism, magnetic property, and application in water treatment. J Colloid Interf Sci. 2012;385:58–65.

    Article  Google Scholar 

  6. Stoia M, Păcurariu C, Istratie R, Nižňansky D. Solvothermal synthesis of magnetic FexOy/C nanocomposites used as adsorbents for the removal of methylene blue from wastewater. J Therm Anal Calorim. 2015;121:989–1001.

    Article  CAS  Google Scholar 

  7. Shen L, Qiao Y, Guon Y, Meng S, Yang G, Wu M, Zhao J. Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram Int. 2014;40:1519–24.

    Article  CAS  Google Scholar 

  8. Correa JR, Canetti D, Castillo R, Llopiz JC, Dufou J. Influence of the precipitation pH of magnetite in the oxidation process to maghemite. Mater Res Bull. 2006;41:703–13.

    Article  CAS  Google Scholar 

  9. Strobel R, Pratsinis SE. Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv Powder Technol. 2009;20:190–4.

    Article  CAS  Google Scholar 

  10. Lemine OM, Omri K, Zhang B, El Mira L, Sajieddine M, Alyamani A, Bououdina M. Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattice Microst. 2012;52:793–9.

    Article  CAS  Google Scholar 

  11. Chin SF, Pang SC, Tan CH. Green synthesis of magnetite nanoparticles (via Thermal Decomposition Method) with controllable size and shape. J Mater Environ Sci. 2011;2(3):299–302.

    CAS  Google Scholar 

  12. Ianoş R, Tăculescu A, Păcurariu C, Lazău I. Solution Combustion Synthesis and Characterization of Magnetite, Fe3O4, Nanopowders. J Am Ceram Soc. 2012;95(7):2236–40.

    Article  Google Scholar 

  13. Hawa CY, Mohamed F, Chia CH, Radiman S, Zakaria S, Huang NM, Lim HN. Hydrothermal synthesis of magnetite nanoparticles as MRI contrast agents. Ceram Int. 2010;36:1417–22.

    Article  Google Scholar 

  14. Wang X, Yu J, Shi G, Xu G, Zhang Z. Solvothermal synthesis of magnetite hollow submicrospheres and mesoporous nanoparticles. J Mater Sci. 2014;49:6029–38.

    Article  CAS  Google Scholar 

  15. Can MM, Ozcan S, Ceylan A, Firat T. Effect of milling time on the synthesis of magnetite nanoparticles by wet milling. Mat Sci Eng B. 2010;172:72–5.

    Article  CAS  Google Scholar 

  16. Maity D, Agrawal DC. Synthesis of iron oxide nanoparticles under oxidizing environment and their stabilization in aqueous and non-aqueous media. J Magn Magn Mater. 2007;308:46–55.

    Article  CAS  Google Scholar 

  17. Sanders JP, Gallagher PK. Kinetics of the oxidation of magnetite using simultaneous TG/DSC. J Therm Anal Calorim. 2003;72:777–89.

    Article  CAS  Google Scholar 

  18. Fajaroh F, Setyawan H, Nur A, Lenggoro IW. Thermal stability of silica-coated magnetite nanoparticles prepared by an electrochemical method. Adv Powder Technol. 2013;24:507–11.

    Article  CAS  Google Scholar 

  19. Lepp H. Stages in the oxidation of magnetite. Am Mineral. 1957;42:679–81.

    CAS  Google Scholar 

  20. Szostko BK, Wykowska U, Satula D, Nordblad P. Thermal treatment of magnetite nanoparticle. Beilstein J Nanotechnol. 2015;6:1385–96.

    Article  Google Scholar 

  21. Sanders JP, Gallagher PK. Thermomagnetic evidence of γ-Fe2O3 as an intermediate in the oxidation of magnetite. Thermoch Acta. 2003;406:241–3.

    Article  CAS  Google Scholar 

  22. Haneda K, Morrish AH. Magnetite to maghemite transformation in ultrafine particles. Colloque. 1977;38:C1321–3. doi:10.1051/jphyscol:1977166.

    Google Scholar 

  23. Li YS, Church JS, Woodhead AL. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. J Magn Magn Mater. 2012;324:1543–50.

    Article  CAS  Google Scholar 

  24. Kim W, Suh CY, Cho SW, Roh KM, Kwon H, Song K, Shon IJ. A new method for the identification and quantification of magnetite–maghemite mixture using conventional X-ray diffraction technique. Talanta. 2012;94:348–52.

    Article  CAS  Google Scholar 

  25. Mahadevan S, Gnanaprakash G, Philip J, Rao BPC, Jayakumar T. X-ray diffraction-based characterization of magnetite nanoparticles in presence of goethite and correlation with magnetic properties. Physica E. 2007;39:20–5.

    Article  CAS  Google Scholar 

  26. Gorski CA, Scherer MM. Determination of nanoparticulate magnetite stoichiometry by Mössbauer spectroscopy, acidic dissolution, and powder X-ray diffraction: a critical review. Am Mineral. 2010;95:1017–26.

    Article  CAS  Google Scholar 

  27. Gotic M, Košcec G, Music S. Study of the reduction and reoxidation of substoichiometric magnetite. J Mol Struct. 2009;924–926:347–54.

    Article  Google Scholar 

  28. Namduri H, Nasrazadani S. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros Sci. 2008;50:2493–7.

    Article  CAS  Google Scholar 

  29. Daou TJ, Pourroy G, Colin SB, Greneche JM, Ulhaq-Bouillet C, Legare P, Bernhardt P, Leuvrey C, Rogez G. Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater. 2006;18:4399–404.

    Article  CAS  Google Scholar 

  30. Ueda M, Shimada S, Inaga M. Synthesis of crystalline ferrites below 60 C. J Eur Ceram Soc. 1996;16:685–6.

    Article  CAS  Google Scholar 

  31. Legodi MA, de Waal D. The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes Pigments. 2007;74:161–8.

    Article  CAS  Google Scholar 

  32. Mihalca I, Ercuta A. Structural relaxation in Fe70Cr10.5P11.5Mn1.5C6.5 amorphous alloy. J Optoelectron Adv Mat. 2003;5:245–50.

    CAS  Google Scholar 

  33. ***The Powder Diffraction File (PDF 4+) JCPDS—Joint Committee on Powder Diffraction Standards, ICC—International Center for Diffraction Data, 2012.

  34. Olowe AA, Génin JMR. The mechanism of oxidation of ferrous hydroxide in sulphated aqueous media: importance of the initial ratio of the reactants. Corros Sci. 1991;32:965–84.

    Article  CAS  Google Scholar 

  35. Refait Ph, Génin JMR. The oxidation of ferrous hydroxide in chloride-containing aqueous media and Pourbaix diagrams of green rust one. Corros Sci. 1993;34:797–819.

    Article  CAS  Google Scholar 

  36. Iida H, Kosuke T, Takuya N, Tetsuya O. Synthesis of Fe3O4 nanoparticles with various sizes and magnetic properties by controlled hydrolysis. J Colloid Interface Sci. 2007;314:274–80.

    Article  CAS  Google Scholar 

  37. Morgan B, Lahav O. The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution—basic principles and a simple heuristic description. Chemosphere. 2007;68:2080–4.

    Article  CAS  Google Scholar 

  38. Ye X, Lin D, Jiao Z, Zhang L. The thermal stability of nanocrystalline maghemite Fe2O3. J Phys D Appl Phys. 1998;31:2739–44.

    Article  CAS  Google Scholar 

  39. Lauer HV Jr, Ming DW, Golden DC. Thermal analysis of acicular shaped magnetite. Lunar Planetary Sci. XXXIV. 2003; http://www.lpi.usra.edu/meetings/lpsc2003/pdf/1341.pdf. Accessed 29 Sept 2015.

  40. Fan H, Song B, Li Q. Thermal behavior of goethite during transformation to hematite. Mater Chem Phys. 2006;98:148–53.

    Article  CAS  Google Scholar 

  41. Ishii M, Nakahira M. Infrared absorption spectra and cation distribution in (Mn, Fe)3O4. Solid State Commun. 1972;11:209–12.

    Article  CAS  Google Scholar 

  42. Ercuta A, Chirita M. Highly crystalline porous magnetite and vacancy-ordered maghemite microcrystals of rhombohedral habit. J Cryst Growth. 2013;380:182–6.

    Article  CAS  Google Scholar 

  43. Cambier P. Infrared study of goethites of varying crystallinity and particle size: i. interpretation of oh and lattice vibration frequencies. Clay Miner. 1986;21:191–200.

    Article  CAS  Google Scholar 

  44. de Aragão BJG, Messaddeq Y. Peak separation by derivative spectroscopy applied to FT-IR analysis of hydrolized silica. J Braz Chem Soc. 2008;19(8):1582–94.

    Article  Google Scholar 

  45. Stancik AL, Brauns EB. A simple asymmetric lineshape for fitting infrared absorption spectra. Vib Spectrosc. 2008;47:66–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS–UEFISCDI, Project Number PN-II-RU-TE-2014-4-0514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Stoia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stoia, M., Istratie, R. & Păcurariu, C. Investigation of magnetite nanoparticles stability in air by thermal analysis and FTIR spectroscopy. J Therm Anal Calorim 125, 1185–1198 (2016). https://doi.org/10.1007/s10973-016-5393-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5393-y

Keywords

Navigation