Skip to main content
Log in

Kinetics of thermal expansion of illite-based ceramics in the dehydroxylation region during heating

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The kinetics of the illite dehydroxylation is investigated using data from non-isothermal thermodilatometric experiments. An illitic clay with more than 70 % of illite was thermally treated under several heating rates from 1 to 15 °C min−1 in the dehydroxylation region. Model-free and nonlinear model-fitting methods were used to analyze the data, and their results are discussed. The dehydroxylation of the trans-vacant and cis-vacant illite layers can be described by the Avrami–Erofeev model with the exponent values 1.010 and 2.1, respectively, and the apparent activation energies of 119 and 184 kJ mol−1, respectively. The obtained kinetic parameters were used for the calculation of an optimal heating regime in order to achieve a constant thermal expansion rate in the dehydroxylation region for an illite-based ceramic body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ferrari S, Gualtieri A. The use of illitic clays in the production of stoneware tile ceramics. Appl Clay Sci. 2006;32:73–81.

    Article  CAS  Google Scholar 

  2. Gualtieri AF, Ferrari S. Kinetics of illite dehydroxylation. Phys Chem Miner. 2006;33:490–501.

    Article  CAS  Google Scholar 

  3. Grim G, Bray R, Bradley W. The mica in argillaceous sediments. Am Mineral. 1937;22:813–29.

    CAS  Google Scholar 

  4. Środoń J, Illite ED. Rev Mineral Geochem. 1984;13:495–544.

    Google Scholar 

  5. Gualtieri AF, Ferrari S, Leoni M, Grathoff G, Hugo R, Mouath S, Paglia G, Billinge S. Structural characterization of the clay mineral illite-1M. J Appl Crystallogr. 2008;41:402–15.

    Article  CAS  Google Scholar 

  6. Venturelli C, Paganelli M. Sintering behaviour of clays for the production of ceramics. Process Eng. 2007;84:5–8.

    Google Scholar 

  7. Bennour A, Mahmoudi S, Srasra E, Hatira N, Boussen S, Ouaja M, Zargouni F. Identification and traditional ceramic application of clays from the Chouamekh region in south-eastern Tunisia. Appl Clay Sci. 2015;118:212–20.

    Article  CAS  Google Scholar 

  8. Antal D, Húlan T, Trník A, Štubňa I, Ondruška J. The influence of texture and firing on thermal and elastic properties of illite-based ceramics. Adv Mater Res. 2015;1126:53–8.

    Article  Google Scholar 

  9. Gemmi M, Merlini M, Pavese A, Curetti N. Thermal expansion and dehydroxylation of phengite micas. Phys Chem Miner. 2008;35:367–79.

    Article  CAS  Google Scholar 

  10. Guggenheim S, Chang YH, van Groos KA. Muscovite dehydroxylation: high-temperature studies. Am Mineral. 1987;72:537–50.

    CAS  Google Scholar 

  11. Drebushchak VA, Mylnikova LN, Molodin VI. Thermogravimetric investigation of ancient ceramics: metrological analysis of sampling. J Therm Anal Calorim. 2007;90:73–9.

    Article  CAS  Google Scholar 

  12. Ptáček P, Frajkorová F, Šoukal F, Opravil T. Kinetics and mechanism of three stages of thermal transformation of kaolinite to metakaolinite. Powder Technol. 2014;264:439–45.

    Article  Google Scholar 

  13. Ptáček P, Kubátová D, Havlica J, Brandštetr J, Šoukal F, Opravil T. The non-isothermal kinetic analysis of the thermal decomposition of kaolinite by thermogravimetric analysis. Powder Technol. 2010;204:222–7.

    Article  Google Scholar 

  14. Ptáček P, Šoukal F, Opravil T, Havlica J, Brandštetr J. The kinetic analysis of the thermal decomposition of kaolinite by DTG technique. Powder Technol. 2011;208:20–5.

    Article  Google Scholar 

  15. Ptáček P, Opravil T, František Š, Wasserbauer J, Másilko J, Baráček J. The influence of structure order on the kinetics of dehydroxylation of kaolinite. J Eur Ceram Soc. 2013;33:2793–9.

    Article  Google Scholar 

  16. Levy JH, Hurst HJ. Kinetics of dehydroxylation, in nitrogen and water wapour, of kaolinite and smectite from Australian Tertiary oil shales. Fuel. 1993;72:873–7.

    Article  CAS  Google Scholar 

  17. Ortega A, Manuel M, Gotor FJ. The multistep nature of the kaolinite dehydroxylation: kinetics and mechanism. J Am Ceram Soc. 2010;93:197–203.

    Article  CAS  Google Scholar 

  18. Mitra N, Maitra S. Effect of surface-area on the dehydroxylation kinetics of kaolinite mineral. J Indian Chem Soc. 1993;70:629–32.

    CAS  Google Scholar 

  19. Hirono T, Tanikawa W. Implications of the thermal properties and kinetic parameters of dehydroxylation of mica minerals for fault weakening, friction heating, and earthquake energetics. Earth Planet Sci Lett. 2011;307:161–72.

    Article  CAS  Google Scholar 

  20. Drits VA, Lindgreen H, Salyn AL, Ylagan R, McCarty DK. Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction. Am Mineral. 1998;83:1188–98.

    Article  CAS  Google Scholar 

  21. Vyazovkin S, Chrissafis K, Di Lorenzo ML, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  22. Sánchez-Rodríguez D, Eloussifi H, Farjas J, Roura P, Dammak M. Thermal gradients in thermal analysis experiments: criterions to prevent inaccuracies when determining sample temperature and kinetics parameters. Thermochim Acta. 2014;589:37–46.

    Article  Google Scholar 

  23. Podoba R, Podobník Ľ, Trník A. Upgrading of TGA/DTA analyzer derivatograph. Épitőanyag. 2012;64:28–9.

    Google Scholar 

  24. Vyazovkin S, Burnham AK, José CM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  25. Sbirrazzuoli N. Determination of pre-exponential factors and of the mathematical functions f(α) or G(α) that describe the reaction mechanism in a model-free way. Thermochim Acta. 2013;564:59–69.

    Article  CAS  Google Scholar 

  26. Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC Kinetics Project—the light at the end of the tunnel? Thermochim Acta. 2000;355:155–63.

    Article  CAS  Google Scholar 

  27. Arhangelskii I, Dunaev A, Makarenko I, Tikhonov N, Belyaev S, Tarasov A. Non-isothermal kinetic methods: Workbook and laboratory manual. Berlin: Edition Open Access; 2013.

    Google Scholar 

  28. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci. 1964; Part C:183–95.

  29. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115:1780–91.

    Article  Google Scholar 

  30. Málek J. The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim Acta. 1995;267:61–73.

    Article  Google Scholar 

  31. Kingery WD. Factors affecting thermal stress resistance of ceramic materials. J Am Ceram Soc. 1955;38:3–15.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant VEGA 1/0162/15 from the Ministry of Education of the Slovak Republic, grant VII/5/2016 from Constantine the Philosopher University, and by the Czech Science Foundation under the project No. P105/12/G059. The authors are indebted to J. Biber from Inter-ILI Engineering Office (Hungary) for a supply of illite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Húlan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Húlan, T., Trník, A. & Medveď, I. Kinetics of thermal expansion of illite-based ceramics in the dehydroxylation region during heating. J Therm Anal Calorim 127, 291–298 (2017). https://doi.org/10.1007/s10973-016-5873-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5873-0

Keywords

Navigation