Skip to main content
Log in

Synthesis and thermal stability of rare-earths molybdates and tungstates with fluorite- and scheelite-type structure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polycrystalline samples of rare-earths molybdates and tungstates, i.e., CdRE4Mo3O16 (RE = Eu, Gd, Y, Ho) and Pb1–3xxEu2xWO4 (0 < x ≤ 0.1296 and □ denotes cationic vacancies) have been successfully prepared by high-temperature annealing of adequate CdMoO4/RE2MoO6 and PbWO4/Eu2(WO4)3 mixtures, respectively. According to the X-ray diffraction analysis, the CdRE4Mo3O16 compounds crystallize in a cubic, fluorite-related-type structure with space group \(Pn\bar{3}n\). In turn, new Pb1–3xxEu2xWO4 phases crystallize in the scheelite-type, tetragonal symmetry, space group I41/a. Cadmium and rare-earth molybdates decompose in the solid state and the solid products of their decomposition are two RE molybdates, i.e., RE2MoO6 and RE2(MoO4)3. Thermal stability of CdRE4Mo3O16 decreases with decreasing of RE3+ radius. The melting point of each sample of Pb1–3xxEu2xWO4 solid solution is lower than melting point of pure matrix, i.e., PbWO4 (1116 °C), and it decreases with increasing in Eu content. Both CdRE4Mo3O16 as well as Pb1–3xxEu2xWO4 samples are insulators, and their optical band gap (E g) is bigger than 3 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Öztürk E, Kalaycioglu Ozpozan N. Mn4+-, Tb3+,4+-, and Er3+- activated red phosphors in the MgAl2Si2O8 system. J Therm Anal Calorim. 2014;115:573–7.

    Article  Google Scholar 

  2. Öztürk E, Karacaoglu E. Luminescence properties of M2TiO4:Eu3+, Li+, (M:Mg, Ca) and MgAl2O4:RE3+ (RE3+:Ho3+, Sm3+, and Yb3+). J Therm Anal Calorim. 2015;119:1063–71.

    Article  Google Scholar 

  3. Öztürk E, Karacaoglu E. Investigation of phase formation dependency of photoluminescence properties of Eu3+ in Mg4Al2O7:Eu3+, Dy3+, and Ca4Al2O7:Eu3+, Dy3+ red-emitting phosphors. J Therm Anal Calorim. 2015;120:1139–43.

    Article  Google Scholar 

  4. Öztürk E. The effect of Ba/Mg impurities on the phase formation and photoluminescence properties of (Sr3-xMx)Al2O6:Eu3+, Ho3+ (M = Ba, Mg) phosphors. J Therm Anal Calorim. 2016;126:365–9.

    Article  Google Scholar 

  5. Guzik M, Cybińska J, Tomaszewicz E, Guyot Y, Legendziewicz J, Boulon G, Stręk W. Spectroscopic behavior of Nd3+ in a new microcrystalline ZnY4W3O16 tungstate. Opt Mater. 2011;34:487–95.

    Article  CAS  Google Scholar 

  6. Tomaszewicz E, Guzik M, Cybińska J, Legendziewicz J. Spectroscopic investigation of the Eu(3+) ion in a new ZnY4W3O16 matrix. Helv Chim Acta. 2009;92:2274–90.

    Article  CAS  Google Scholar 

  7. Guzik M, Tomaszewicz E, Kaczmarek SM, Cybińska J, Fuks H. Spectroscopic investigations of Cd0.25Gd0.500.25WO4:Eu3+—a new promising red phosphor. J Non Cryst Solids. 2010;356:1902–7.

    Article  CAS  Google Scholar 

  8. Guzik M, Tomaszewicz E, Guyot Y, Legendziewicz J, Boulon J. Spectroscopic properties, concentration quenching and Yb3+ site occupations in a vacancied scheelite-type molybdates. J Lumin. 2016;169:755–64.

    Article  CAS  Google Scholar 

  9. Shivakumara C, Saraf R. Eu3+-activated SrMoO4 phosphors for white LEDs applications: synthesis and structural characterization. Opt Mater. 2015;42:178–86.

    Article  CAS  Google Scholar 

  10. Aghamalyan NR, Demirkhanyan GG, Hovsepyan RK, Kostanyan RB, Zargaryan DG. Room-temperature near infrared emission and green up-conversion in PbMoO4:Er3+ crystals. Opt Mater. 2010;32:1046–9.

    Article  CAS  Google Scholar 

  11. Tu C, Qiu M, Li J, Liao H. The study of 1.06 μm laser characteristics of Nd3+:KGd(WO4)2 crystal. Opt Mater. 2001;16:431–6.

    Article  CAS  Google Scholar 

  12. Kato A, Oishi S, Shishido T, Yamazaki M, Iida S. Evaluation of stoichiometric rare-earth molybdate and tungstate compounds as laser materials. J Phys Chem Solids. 2005;66:2079–81.

    Article  CAS  Google Scholar 

  13. Grabtchikov AS, Kuzmin AN, Lisinwtskii VA, Orlovich VA, Demidovich AA, Yumashev KV, Kuleshov NV, Eichler HJ, Danailov MB. Passively Q-switched 1.35 μm diode pumped Nd:KGW laser with V:YAG saturable absorber. Opt Mater. 2001;16:349–52.

    Article  CAS  Google Scholar 

  14. Cano-Torres JM, Han X, García-Cortés A, Serrano MD, Zaldo C, Valle FJ, Mateos X, Rivier S, Griebner U, Petrov V. Infrared spectroscopic and laser characterization of Tm in disordered double tungstates. Mat Sci Eng B. 2008;146:22–8.

    Article  CAS  Google Scholar 

  15. Bourdet JB, Chevalier R, Fournier JP, Kohlmuller R, Omaly J. A structural study of cadmium yttrium molybdate CdY4Mo3O16. Acta Crystallogr B. 1982;38:2371–4.

    Article  Google Scholar 

  16. Faurie JP, Kohlmuller R. Étude des phases MLn4Mo3O16 et M’Ln6Mo4O22 (M = Cd; M’ = Ca, Sr) de structure dérivée de la fluorine par magnétochemie, luminescence cristalline, spectroscopic infrarouge, et radiocristallographie. Hypothèse structurale pour la phase CdTm4Mo3O16. Rev Chim Miner. 1971;8:241–76.

    CAS  Google Scholar 

  17. Sleight AW. Accurate cell dimensions for ABO4 molybdates and tungstates. Acta Crystallogr B. 1972;28:2899–902.

    Article  CAS  Google Scholar 

  18. Bomio MRD, Cavalcante LS, Almeida MAP, Tranquilin RL, Batista NC, Pizani PS, Siu Li M, Andrés J, Longo E. Structural refinement, growth mechanism, infrared/Raman spectroscopies and photoluminescence properties of PbMoO4 crystals. Polyhedron. 2013;50:532–45.

    Article  CAS  Google Scholar 

  19. Piątkowska M, Tomaszewicz E. Solid-state synthesis, thermal stability and optical properties of new scheelite-type Pb1–3x□xPr2xWO4 ceramics where □ denotes cationic vacancies. Mat Lett. 2016;182:332–5.

    Article  Google Scholar 

  20. Tomaszewicz E, Filipek E, Fuks H, Typek J. Thermal and magnetic properties of new scheelite type Cd1–3xxGd2xMoO4 ceramic materials. J Eur Ceram Soc. 2014;34:1511–22.

    Article  CAS  Google Scholar 

  21. Guzik M, Tomaszewicz E, Guyot Y, Legendziewicz J, Boulon G. Structural and spectroscopic characterizations of new vacancied Cd1–3xNd2xxMoO4 scheelite-type molybdates as potential optical materials. J Mater Chem C. 2015;3:4057–69.

    Article  CAS  Google Scholar 

  22. Tomaszewicz E, Dąbrowska G, Filipek E, Fuks H, Typek J. Structure, thermal and magnetic properties of new scheelite-type Cd1–3xxGd2x(MoO4)1–3x(WO4)3x ceramics. Ceram Int. 2016;42:6673–81.

    Article  CAS  Google Scholar 

  23. Kukuła Z, Tomaszewicz E, Mazur S, Groń T, Pawlus S, Duda H, Mydlarz T. Electrical and magnetic properties of CdRE2W2O10 tungstates (RE = Y, Nd, Sm, Gd-Er). J Phys Chem Solids. 2013;74:86–93.

    Article  Google Scholar 

  24. Tomaszewicz E, Fuks H, Typek J, Sawicki B, Oboz M, Groń T, Mydlarz T. Preparation, thermal stability and magnetic properties of new AgY1–xGdx(WO4)2 ceramic materials. Ceram Int. 2015;41:5734–48.

    Article  CAS  Google Scholar 

  25. Tomaszewicz E, Dąbrowska G. Reactivity in the solid state between ZnWO4 and some rare-earth metal molybdates RE 2MoO6, (RE = Y, Sm, Eu, Gd, Dy, Ho, Er and Lu). J Therm Anal Cal. 2008;94:189–94.

    Article  CAS  Google Scholar 

  26. Tomaszewicz E, Worsztynowicz A, Kaczmarek SM. Subsolidus phase relations in CuWO4-–Gd2WO6 system. Solid State Sci. 2007;9:43–51.

    Article  CAS  Google Scholar 

  27. Keskar M, Krishnan K, Phatak R, Dash S, Sali SK, Kannan S. Studies on thermophysical properties of ThW2O8 and UWO6. J Therm Anal Calorim. 2016;126:659–70.

    Article  CAS  Google Scholar 

  28. Taupin D. A powder—diagram automatic—indexing routine. J Appl Crystallogr. 1973;6:380–5.

    Article  CAS  Google Scholar 

  29. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A. 1976;32(5):751–67.

    Article  Google Scholar 

  30. Jeitschko W. A comprehensive X-ray study of the ferroelectric–ferroelastic and paraelectric–paraelastic phase of Gd2(MoO4)3. Acta Crystallogr B. 1972;28:60–76.

    Article  CAS  Google Scholar 

  31. Sleight AW, Brixner LH. A new ferroelastic transition in some A2(MO4)3 molybdates and tungstates. J Solid State Chem. 1973;7:172–4.

    Article  CAS  Google Scholar 

  32. Brixner LH, Bierstedt PE, Sleight AW, Licis MS. Precision parameters of some Ln2(MoO4)3-type rare earth molybdates. Mat Res Bull. 1971;6:545–54.

    Article  CAS  Google Scholar 

  33. Alonso JA, Rivillas F, Martínez-Lope MJ, Pomjakushin V. Preparation and structural study from neutron diffraction data of R2MoO6 (R = Dy, Ho, Er, Tm, Yb, Y). J Solid State Chem. 2004;177:2470–6.

    Article  CAS  Google Scholar 

  34. Brixner LH, Sleight AW, Licis MS. Ln2MoO6-type rare earth molybdates—preparation and lattice parameters. J Solid State Chem. 1972;5:186–90.

    Article  CAS  Google Scholar 

  35. Kubelka P, Munk F. Ein Beitrag zur Optic der Farbanstriche. Z Tech Phys. 1931;12:593–601.

    Google Scholar 

  36. Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structures of amorphous germanium. Phys Status Solidi. 1966;15:627–37.

    Article  CAS  Google Scholar 

  37. Wood DL, Tauc J. Weak absorption tails in amorphous semiconductors. Phys Rev B. 1972;5:3144–51.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elżbieta Tomaszewicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawlikowska, M., Piątkowska, M. & Tomaszewicz, E. Synthesis and thermal stability of rare-earths molybdates and tungstates with fluorite- and scheelite-type structure. J Therm Anal Calorim 130, 69–76 (2017). https://doi.org/10.1007/s10973-017-6127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6127-5

Keywords

Navigation