Skip to main content
Log in

Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The enhancement of thermal conductivities of water in the presence of copper oxide and multiwalled carbon nanotubes is investigated for the first time. Hybrid nanofluid is a homogenous mixture of multiwalled carbon nanotubes-CuO particles suspended in water as the base fluid. The thermal conductivity of mixture is measured by KD2 Pro instrument. All thermal conductivity measurements are repeated three times in the range of 25–50 °C. A hot water bath is used to stabilize the temperature at 25, 30, 35, 40, 45 and 50 °C during the measurements. The results show that the thermal conductivity of the nanofluid increases at more solid concentration. Furthermore, the thermal conductivity of the nanofluid increases with the temperature; however, this increase is by far more noticeable in higher solid concentrations compared with the lower ones. Moreover, it is tried to propose a new correlation for predicting the thermal conductivity of the present nanofluid at different temperatures and volume fractions. The highest enhancement percentage was observed as 30.38% for the state of T = 50 °C and φ = 0.6%. However, the enhancement percentages were achieved as 25.57–30.38 for the state of φ = 0.6% at T = 25–50 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ-Fed. 1995;231:99–106.

    CAS  Google Scholar 

  2. Baratpour M, Karimipour A, Afrand M, Wongwises S. Effects of temperature and concentration on the viscosity of nanofluids made of single-wall carbon nanotubes in ethylene glycol. Int Commun Heat Mass Transfer. 2016;74:108–13.

    Article  CAS  Google Scholar 

  3. Esfe MH, Rostamian H, Afrand M, Karimipour A, Hassani M. Modeling and estimation of thermal conductivity of MgO–water/EG (60: 40) by artificial neural network and correlation. Int Commun Heat Mass Transfer. 2015;68:98–103.

    Article  Google Scholar 

  4. Hamed E, Afrand M. An experimental study on rheological behavior of non-Newtonian hybrid nano-coolant for application in cooling and heating systems. Exp Therm Fluid Sci. 2016;76:221–7.

    Article  Google Scholar 

  5. Esfe MH, Afrand M, Karimipour A, Yan WM, Sina N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. Int Commun Heat Mass Transf. 2015;67:173–5.

    Article  Google Scholar 

  6. Nikkhah Z, Karimipour A, Safaei MR, Forghani-Tehrani P, Goodarzi M, Dahari M, Wongwises S. Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition. Int Commun Heat Mass Transf. 2015;68:69–77.

    Article  CAS  Google Scholar 

  7. Karimipour A. New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method. Int J Therm Sci. 2015;91:146–56.

    Article  CAS  Google Scholar 

  8. Afrand M, Najafabadi KN, Akbari M. Effects of temperature and solid volume fraction on viscosity of SiO 2-MWCNTs/SAE40 hybrid nanofluid as a coolant and lubricant in heat engines. Appl Therm Eng. 2016;102:45–54.

    Article  CAS  Google Scholar 

  9. Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S. Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim. 2014;118:287–94.

    Article  Google Scholar 

  10. Yabuki A, Arriffin N. Electrical conductivity of copper nanoparticle thin films annealed at low temperature. Thin Solid Films. 2010;518:7033–7.

    Article  CAS  Google Scholar 

  11. Tomonari M, Ida K, Yamashita H, Yonezawa T. Size-controlled oxidation-resistant copper fine particles covered by biopolymer nanoskin. J Nanosci Nanotechnol. 2008;8:2468–71.

    Article  CAS  Google Scholar 

  12. Yonezawa T, Nishida N, Hyono A. One-pot preparation of antioxidized copper fine particles with a unique structure by chemical reduction at room temperature. Chem Lett. 2010;39:548–9.

    Article  CAS  Google Scholar 

  13. Chandrasekar M, Suresh S, Chandra B. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci. 2010;34:210–6.

    Article  CAS  Google Scholar 

  14. Chein R, Chuang J. Experimental microchannel heat sink performance studies using nanofluids. Int J Therm Sci. 2007;46:57–66.

    Article  CAS  Google Scholar 

  15. Soltanimehr M, Afrand M. Thermal conductivity enhancement of COOH-functionalized MWCNTs/ethylene glycol–water nanofluid for application in heating and cooling systems. Appl Therm Eng. 2016;105:716–23.

    Article  CAS  Google Scholar 

  16. Karimipour A, Nezhad AH, D’Orazio A, Esfe MH, Safaei MR, Shirani E. Simulation of copper–water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. Eur J Mech-B/Fluids. 2015;49:89–99.

    Article  Google Scholar 

  17. Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid. Exp Therm Fluid Sci. 2016;76:342–51.

    Article  CAS  Google Scholar 

  18. Afrand M. Experimental study on thermal conductivity of ethylene glycol containing hybrid nano-additives and development of a new correlation. Appl Therm Eng. 2017;110:1111–9.

    Article  CAS  Google Scholar 

  19. Dardan E, Afrand M, Meghdadi Isfahani AH. Effect of suspending hybrid nano-additives on rheological behavior of engine oil and pumping power. Appl Therm Eng. 2016;109:524–34.

    Article  CAS  Google Scholar 

  20. Esfe MH, Akbari M, Semiromi DT, Karimiopour A, Afrand M. Effect of nanofluid variable properties on mixed convection flow and heat transfer in an inclined two-sided lid-driven cavity with sinusoidal heating on sidewalls. Heat Transf Res. 2014;45:409–32.

    Article  Google Scholar 

  21. Karimipour A, Esfe MH, Safaei MR, Semiromi DT, Jafari S, Kazi SN. Mixed convection of copper–water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method. Phys A Stat Mech Appl. 2014;402:150–68.

    Article  CAS  Google Scholar 

  22. Esfe MH, Akbari M, Karimipour A, Afrand M, Mahian O, Wongwises S. Mixed-convection flow and heat transfer in an inclined cavity equipped to a hot obstacle using nanofluids considering temperature-dependent properties. Int J Heat Mass Transf. 2015;85:656–66.

    Article  Google Scholar 

  23. Esfe MH, Arani AAA, Karimiopour A, Esforjani SSM. Numerical simulation of natural convection around an obstacle placed in an enclosure filled with different types of nanofluids. Heat Transf Res. 2014;45(3):279–92.

    Google Scholar 

  24. Esfe MH, Ahangar MRH, Toghraie D, Hajmohammad MH, Rostamian H, Tourang H. Designing artificial neural network on thermal conductivity of Al2O3–water–EG (60–40%) nanofluid using experimental data. J Therm Anal Calorim. 2016;126(2):837–43.

    Article  Google Scholar 

  25. Esfe MH, Esforjani SSM, Akbari M, Karimiopour A. Mixed-convection flow in a lid-driven square cavity filled with a nanofluid with variable properties: effect of the nanoparticle diameter and of the position of a hot obstacle. Heat Transf Res. 2014;45(6):563–78.

    Article  Google Scholar 

  26. Esfe MH, Naderi A, Akbari M, Karimipour M. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121:1273–8.

    Article  Google Scholar 

  27. Esfe MH, Saedodin S, Asadi A, Karimipour A. Thermal conductivity and viscosity of Mg (OH) 2-ethylene glycol nanofluids. J Therm Anal Calorim. 2015;120:1145–9.

    Article  Google Scholar 

  28. Akbar NS, Raza M, Ellahi R. Interaction of nanoparticles for the peristaltic flow in an asymmetric channel with the induced magnetic field. Eur Phys J Plus. 2014;129:1–12.

    Article  Google Scholar 

  29. Akbar NS, Raza M, Ellahi R. Influence of induced magnetic field and heat flux with the suspension of carbon nanotubes for the peristaltic flow in a permeable channel. J Magn Magn Mater. 2015;381:405–15.

    Article  Google Scholar 

  30. Zeeshan A, Ellahi R, Hassan M. Magnetohydrodynamic flow of water/ethylene glycol based nanofluids with natural convection through a porous medium. Eur Phys J Plus. 2015;129:1–10.

    Google Scholar 

  31. Sheikholeslami M, Ellahi R, Hassan M, Soleimani S. A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int J Numer Meth Heat Fluid Flow. 2014;24:1906–27.

    Article  Google Scholar 

  32. Sheikholeslami M, Ellahi R, Ashorynejad H, Domairry G, Hayat T. Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium. J Comput Theor Nanosci. 2014;11:486–96.

    Article  CAS  Google Scholar 

  33. Sheikholeslami M, Bandpy MG, Ellahi R, Zeeshan A. Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces. J Magn Magn Mater. 2014;369:69–80.

    Article  CAS  Google Scholar 

  34. Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater. 2015;374:36–43.

    Article  CAS  Google Scholar 

  35. Ciloglu D, Bolukbasi A. A comprehensive review on pool boiling of nanofluids. Appl Therm Eng. 2015;84:45–63.

    Article  CAS  Google Scholar 

  36. Wen D, Lin G, Vafaei S, Zhang K. Review of nanofluids for heat transfer applications. Particuology. 2009;7:141–50.

    Article  CAS  Google Scholar 

  37. Navaei AS, Mohammed HA, Munisamy KM, Yarmand H, Gharehkhani S. Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels. Powder Technol. 2015;286:332–41.

    Article  CAS  Google Scholar 

  38. Sidik NAC, Mohammed HA, Alawi OA, Samion S. A review on preparation methods and challenges of nanofluids. Int Commun Heat Mass Transfer. 2014;54:115–25.

    Article  CAS  Google Scholar 

  39. Prasad PVD, Gupta AVSSKS, Deepak K. Investigation of trapezoidal-cut twisted tape insert in a double pipe U-tube heat exchanger using Al2O3/water nanofluid. Prog Mater Sci. 2015;10:50–63.

    CAS  Google Scholar 

  40. Esfe MH, Saedodin S, Mahian O, Wongwises S. Efficiency of ferromagnetic nanoparticles suspended in ethylene glycol for applications in energy devices: effects of particle size, temperature, and concentration. Int Commun Heat Mass Transfer. 2014;58:138–46.

    Article  Google Scholar 

  41. Esfe MH, Arani AAA, Niroumand Ah, Yan WM, Karimipour A. Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids. Int J Heat Mass Transf. 2015;89:783–91.

    Article  Google Scholar 

  42. Saeedinia M, Akhavan-Behabadi MA, Razi P. Thermal and rheological characteristics of CuO–base oil nanofluid flow inside a circular tube. Int Commun Heat Mass Transfer. 2012;39:152–9.

    Article  CAS  Google Scholar 

  43. Harikrishnan S, Kalaiselvam S. Preparation and thermal characteristics of CuO–oleic acid nanofluids as a phase change material. Thermochim Acta. 2012;533:46–55.

    Article  CAS  Google Scholar 

  44. Wongcharee K, Eiamsaard S. Heat transfer enhancement by using CuO/water nanofluid in corrugated tube equipped with twisted tape. Int Commun Heat Mass Transf. 2012;39:251–7.

    Article  CAS  Google Scholar 

  45. Teng T. Thermal conductivity and phase-change properties of aqueous alumina nanofluid. Energy Convers Manag. 2013;67:369–75.

    Article  CAS  Google Scholar 

  46. Esfe MH, Saedodin S, Mahian O. Thermal conductivity of Al2O3/water nanofluids: measurement, correlation, sensitivity analysis, and comparisons with literature reports. J Therm Anal Calorim. 2014;117:675–81.

    Article  Google Scholar 

  47. Lee JH, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, Choi CJ. Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf. 2008;51:2651–6.

    Article  CAS  Google Scholar 

  48. Ghadimi A, Metselaar IH. The influence of surfactant and ultrasonic processing on improvement of stability, thermal conductivity and viscosity of titania nanofluid. Exp Therm Fluid Sci. 2013;51:1–9.

    Article  CAS  Google Scholar 

  49. Kayhani MH, Soltanzadeh H, Heyhat MM, Nazari M, Kowsary F. Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid. Int Commun Heat Mass Transf. 2012;39:456–62.

    Article  CAS  Google Scholar 

  50. Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79:2252–4.

    Article  CAS  Google Scholar 

  51. Yang Y. Carbon nanofluids for lubricant application. Kentucky: University of Kentucky; 2006.

    Google Scholar 

  52. Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermophysical properties heat transfer and pressure drop of COOH-functionalized multi walled carbon nanotubes/water nanofluids. Int Commun Heat Mass Transf. 2014;58:176–83.

    Article  Google Scholar 

  53. Amiri A, Shanbedi M, Eshghi H, Heris SZ, Baniadam M. Highly dispersed multiwalled carbon nanotubes decorated with Ag nanoparticles in water and experimental investigation of the thermophysical properties. J Phys Chem C. 2012;116:3369–75.

    Article  CAS  Google Scholar 

  54. Ashtiani D, Akhavan-Behabadi MA, Pakdaman MF. An experimental investigation on heat transfer characteristics of multi-walled CNT-heat transfer oil nanofluid flow inside flattened tubes under uniform wall temperature condition. Int Commun Heat Mass Transf. 2012;39:1404–9.

    Article  CAS  Google Scholar 

  55. Baghbanzadeh M, Rashidi A, Soleimanisalim AH, Rashtchian D. Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT. Thermochim Acta. 2014;578:53–8.

    Article  CAS  Google Scholar 

  56. Baghbanzadeh M, Rashidi A, Rashtchian D, Lotfi R, Amrollahi A. Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids. Thermochim Acta. 2012;549:87–94.

    Article  CAS  Google Scholar 

  57. Chen L, Xie H. Surfactant-free nanofluids containing double-and single-walled carbon nanotubes functionalized by a wet-mechanochemical reaction. Thermochim Acta. 2010;497:67–71.

    Article  CAS  Google Scholar 

  58. Afrand M, Toghraie D, Ruhani B. Effects of temperature and nanoparticles concentration on rheological behavior of Fe3O4–Ag/EG hybrid nanofluid: an experimental study. Exp Therm Fluid Sci. 2016;77:38–44.

    Article  CAS  Google Scholar 

  59. Esfe MH, Yan WM, Afrand M, Sarraf M, Toghraie D, Dahari M. Estimation of thermal conductivity of Al2O3/water (40%)—ethylene-glycol (60%) by artificial neural network and correlation using experimental data. Int Commun Heat Mass Transf. 2016;74:125–8.

    Article  Google Scholar 

  60. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016. Doi:10.1007/s10973-016-5436-4.

  61. Semiromi DT, Azimian A. Molecular dynamics simulation of annular flow boiling with the modified Lennard-Jones potential function. Heat Mass Transf. 2012;48:141–52.

    Article  CAS  Google Scholar 

  62. Toghraie D, Alempour SMB, Afrand M. Experimental determination of viscosity of Water based magnetite nanofluid for application in heating and cooling systems. J Magn Magn Mater. 2016;417:243–8.

    Article  CAS  Google Scholar 

  63. Esfe MH , Saedodin S, Wongwises S, Toghraie D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. Therm Anal. doi:10.1007/s10973-014-4328-8.

  64. Esfe MH, Afrand M, Gharehkhani S, Rostamiand H, Toghraie D, Dahari M. An experimental study on viscosity of alumina-engine oil: effects of temperature and nanoparticles concentration. Int Commun Heat Mass Transfer. 2016;76:202–8.

    Article  Google Scholar 

  65. Hemmat Esfe M, Afrand M, Yan WM, Yarmand H, Toghraie D, Dahari M. Effects of temperature and concentration on rheological behavior of MWCNTs/SiO2 (20–80)-SAE40 hybrid nano-lubricant. Int Commun Heat Mass Transfer. 2016;76:133–8.

    Article  CAS  Google Scholar 

  66. Esfe MH, Hassani Ahangar MR, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transfer. 2016;75:192–6.

    Article  Google Scholar 

  67. Afrand M, Toghraie D, Sina N. Experimental study on thermal conductivity of water-based Fe3O4 nanofluid: development of a new correlation and modeled by artificial neural network. Int Commun Heat Mass Transf. 2016;75:262–9.

    Article  CAS  Google Scholar 

  68. Afrand M, Sina N, Teimouri H, Mazaheri A, Safaei MR, Hemmat Esfe M, Kamali J, Toghraie D. Effect of magnetic field on free convection in inclined cylindrical annulus containing molten potassium. Int J Appl Mech. 2015;7(04):1550052.

    Article  Google Scholar 

  69. Noorian H, Toghraie D, Azimian AR. Molecular dynamics simulation of Poiseuille flow in a rough nano channel with checker surface roughnesses geometry. Heat Mass Transf. 2014;50(1):105–13.

    Article  CAS  Google Scholar 

  70. Karimipour A, Alipour H, Akbari OA, Semiromi DT, Esfe MH. Studying the effect of indentation on flow parameters and slow heat transfer of water-silver nano-fluid with varying volume fraction in a rectangular two-dimensional micro channel. Indian J Sci Technol. 2015;8:1–15.

    Article  CAS  Google Scholar 

  71. Akbari OA, Toghraie D, Karimipour A. Impact of ribs on flow parameters and laminar heat transfer of Water-Aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. Adv Mech Eng. 2015;7(11):1–11.

    Article  Google Scholar 

  72. Akbari OA, Karimipour A, Toghraie Semiromi D, Safaei MR, Alipour H, Goodarzi Ma, Dahari M. Investigation of rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a two dimensional rib-microchannel. Appl Math Comp. 2016;290:135–53.

    Article  Google Scholar 

  73. Akbari OA, Toghraie D, Karimipour A. Numerical simulation of heat transfer and turbulent flow of Water nanofluids copper oxide in rectangular microchannel with semi attached rib. Adv Mech Eng. 2016;8(4):1–25.

    Article  Google Scholar 

  74. Alipour H, Karimipour A, Safaei MR, Semiromi DT, Akbari OA. Influence of T-semi attached rib on turbulent flow and heat transfer parameters of a silver–water nanofluid with different volume fractions in a three-dimensional trapezoidal microchannel. Phys E Low-Dimens Syst Nanostruct. 2017;88:60–76.

    Article  Google Scholar 

  75. Nazari S, Toghraie D. Numerical simulation of heat transfer and fluid flow of water–CuO nanofluid in a sinusoidal channel with a porous medium. Phys E Low-Dimens Syst Nanostruct. 2017;87:134–40.

    Article  CAS  Google Scholar 

  76. Sajadifar SA, Karimipour A, Toghraie D. Fluid flow and heat transfer of non-Newtonian nanofluid in a microtube considering slip velocity and temperature jump boundary conditions. Eur J Mech-B/Fluids. 2017;61:25–32.

    Article  Google Scholar 

  77. Aghanajafi A, Toghraie D, Mehmandoust B. Numerical simulation of laminar forced convection of water–CuO nanofluid inside a triangular duct. Phys E Low-Dimens Syst Nanostruct. 2017;85:103–8.

    Article  CAS  Google Scholar 

  78. Afrand M, Toghraie D, Karimipour A, Wongwises S. A numerical study of natural convection in a vertical annulus filled with gallium in the presence of magnetic field. J Magn Magn Mater. 2017;430:22–8.

    Article  CAS  Google Scholar 

  79. Toghraie D, Mokhtari M, Afrand M. Molecular dynamic simulation of copper and platinum nanoparticles Poiseuille flow in a nanochannels. Phys E Low-Dimens Syst Nanostruct. 2016;84:152–61.

    Article  CAS  Google Scholar 

  80. Semiromi DT, Azimian AR. Nanoscale Poiseuille flow and effects of modified Lennard-Jones potential function. Heat Mass Transf. 2010;46:791–801.

    Article  Google Scholar 

  81. Semironi DT, Azimian AR. Molecular dynamics simulation of liquid–vapor phase equilibrium by using the modified Lennard-Jones potential function. Heat Mass Transf. 2010;46:287–94.

    Article  Google Scholar 

  82. Semiromi DT, Azimian AR. Molecular dynamics simulation of nonodroplets with the modified Lennard-Jones potential function. Heat Mass Transf. 2011;47:579–88.

    Article  CAS  Google Scholar 

  83. Faridzadeh MR, Semiromi DT, Niroomand A. Analysis of laminar mixed convection in an inclined square lid-driven cavity with a nanofluid by using an artificial neural network. Heat Transf Res. 2014;45:1–20.

    Google Scholar 

  84. Afrand M, Sina N, Teimouri H, Mazaheri A, Safaei MR, Esfe HM, Kamali J, Toghraie D. Effect of magnetic field on free convection in inclined cylindrical annulus containing molten potassium. Int J Appl Mech. 2015;7:1550052.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zadkhast, M., Toghraie, D. & Karimipour, A. Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim 129, 859–867 (2017). https://doi.org/10.1007/s10973-017-6213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6213-8

Keywords

Navigation