Skip to main content
Log in

Thermal study of residues from greenhouse crops plant biomass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The principal aim of this work is to examine the effect of thermal treatments using a muffle furnace (static heating) and by simultaneous TG/DTA (dynamic heating) on selected greenhouse crops plant biomass investigated here as the first time. The effect of fractionation by sieving (<25 and <2.5 mm), preheating at 150 °C for 48 h and leaching with water on the thermal behavior has been studied. The observation of similar profiles of mass variation corresponding to several samples heated in air up to 1150 °C allows to conclude that particle size did not influence the thermal evolution, but the effect of heating cycle is evidenced. Thermal analysis in air of a representative sample showed the several mass variation steps and DTA exothermic effects produced by the complex thermal decomposition and pyrolysis of the organic matter. Elemental analysis (CHNS and O) of the starting samples and thermally treated revealed the effect of the temperature, with formation of ashes with lower C content from 44.37 to 0.70 mass% as a minimum after elimination of organic matter by heating. Leaching increased the thermal mass variation as an effect of elimination of water-soluble components. According to the present results, the size fractionation of the greenhouse crops biomass did not influence the results of elemental composition. The present study has provided results of interest concerning this biomass source of renewable energy originated by the remains of tomato (Solanum lycopersicum L.), being estimated the highest of all the biomass produced by the greenhouse crops agricultural industry in Almería (SE Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Demirbaş A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust. 2005;31:171–92.

    Article  Google Scholar 

  2. Siadur R, Abdelaziz EA, Demirbaş A, Hossain MS, Mekhilef S. A review on biomass as a fuel for boilers. Renew Sust Energy Rev. 2011;15:2262–89.

    Article  Google Scholar 

  3. Vargas-Moreno JM, Callejon-Ferre AJ, Pérez-Alonso J, Velázquez-Martí B. A review of the mathematical model for predicting the heating value of biomass materials. Renew Sust Energy Rev. 2012;16:3065–83.

    Article  CAS  Google Scholar 

  4. Vassilev S, Baxter D, Andersen L, Vassileva C. An overview of the chemical composition of biomass. Fuel. 2010;89:913–33.

    Article  CAS  Google Scholar 

  5. Vassilev S, Baxter D, Andersen L, Vassileva C. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel. 2013;105:40–76.

    Article  CAS  Google Scholar 

  6. Vassilev S, Baxter D, Andersen L, Vassileva C. An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel. 2013;105:19–39.

    Article  CAS  Google Scholar 

  7. Demirbaş A. Combustion characteristics of different biomass fuels. Prog Energy Combust. 2004;30:219–30.

    Article  Google Scholar 

  8. Cioablă AE, Pop N, Trif-Tordai G, Calinoiu DG. Comparative study of agricultural materials influenced by anaerobic fermentation for biogas production in terms of ash melting behavior. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5637-x.

    Google Scholar 

  9. Carrasco B, Cruz N, Terrados J, Corpas FA, Pérez L. An evaluation of bottom ash from plant biomass as a replacement for cement in building blocks. Fuel. 2014;118:272–80.

    Article  CAS  Google Scholar 

  10. Pardosi A, Tognoni F, Incrocci L. Mediterranean greenhouse technology. Chron Hortic. 2004;44:28–34.

    Google Scholar 

  11. Espi E, Salmeron A, Fontecha A, García-Alonso Y, Real AI. Plastic films for agricultural applications. J. Plastic Film Sheet. 2006;22:85–102.

    Article  CAS  Google Scholar 

  12. Callejón-Ferré AJ, Velázquez-Martí B, López-Martínez JA, Manzano-Agugliaro F. Greenhouse crop residues: energy potential and models for the prediction of their higher heating value. Renew Sust Energy Rev. 2011;15:948–55.

    Article  Google Scholar 

  13. Callejón-Ferré AJ, Manzano-Agugliaro F, Díaz-Pérez M, Carreño-Ortega A, Pérez-Alonso J. Effect of shading with aluminised screens on fruit production and quality in tomato (Solanum lycopersicum L.) under greenhouse conditions. Span J Agric Res. 2009;7:41–9.

    Article  Google Scholar 

  14. Callejón-Ferré AJ, López-Martínez JA. Briquettes of plant remains from the greenhouses of Almería (Spain). Span J Agric Res. 2009;7:525–34.

    Article  Google Scholar 

  15. Callejón-Ferré AJ, Carreño-Ortega A, Sánchez-Hermosilla J, Pérez-Alonso J. Environmental impact on agricultural solid waste disposal and transformation plant in the province of Almería (Spain). Inf Constr. 2010;62:79–93.

    Article  Google Scholar 

  16. Callejón-Ferré AJ, Carreño-Sánchez J, Suárez-Medina FJ, Pérez-Alonso J, Velázquez-Martí B. Prediction models for higher heating value based on the structural analysis of the biomass of plant remains from the greenhouses of Almería (Spain). Fuel. 2014;116:377–87.

    Article  Google Scholar 

  17. The most recent statistics are included in SIGPAC. 2014. http://juntadeandalucia.es/agriculturaypesca/portal/servicios/sig/agricultura/sigpac/index.html.

  18. López JC, Pérez C, Fernández MD, Meca D, Gázquez JC, Acien FG. Caracterización de los residuos vegetales de invernadero en Almería, VII Congreso Ibérico de Agroingeniería y Ciencias Hortícolas pp. 2029–2034, 23–26 August; Madrid 2013.

  19. Arvelakis S, Sotiriou C, Moutsatsou A, Koukios EG. Prediction of the behaviour of biomass ash in fluidized bed combustors and gasifiers. J Therm Anal Calorim. 1999;56:1271–8.

    Article  CAS  Google Scholar 

  20. Suárez-García F, Martínez-Alonso A, Fernández-Llorente M, Tascón JMD. Inorganic matter characterization in vegetable biomass feedstocks. Fuel. 2002;81:1161–9.

    Article  Google Scholar 

  21. Arvelakis S, Gehrmann H, Beckmann M, Kaukias EG. Studying the ash behaviour of agricultural residues using thermal analysis. J Therm Anal Calorim. 2003;72:1019–30.

    Article  CAS  Google Scholar 

  22. Strezov V, Moghtaderi B, Lucas JA. Thermal study of decomposition of selected biomass samples. J Thermal Anal Calorim. 2003;72:1041–8.

    Article  CAS  Google Scholar 

  23. Magdziarz A, Wilk M. Thermal characteristics of the combustion process of biomass and sewage sludge. J Therm Anal Calorim. 2013;114:519–29.

    Article  CAS  Google Scholar 

  24. Nogales R, Delgado G, Quirantes M, Romero M, Romero E, Molina-Alcaide E. Characterization of olive waste ashes as fertilizers. In: Insam H, Knapp BA, editors. Recycling of biomass ashes, vol. 5. Berlin: Springer; 2011. p. 57–68.

    Chapter  Google Scholar 

  25. Fernández-Pereira C, de la Casa JA, Gómez-Barea A, Arroyo F, Leiva C, Luna Y. Application of biomass gasification fly ash for brick manufacturing. Fuel. 2011;90:220–32.

    Article  Google Scholar 

  26. Marcelis LFM, Heuvenlik E, De Koning ANM. Dynamic simulation of dry matter distribution in greenhouse crops. Acta Hortic. 1989;248:269–76.

    Article  Google Scholar 

  27. Marcelis LFM. Simulation of biomass allocation in greenhouse crops-A review. Acta Hortic. 1993;328:49–67.

    Article  Google Scholar 

  28. Febrero L, Granada E, Pérez C. Characterisation and comparison of biomass ashes with different thermal histories using TG-DSC. J Therm Anal Calorim. 2014;118:669–80.

    Article  CAS  Google Scholar 

  29. Cioablă AE, Pop N, Calinoiu DG. An experiment approach to the chemical properties and the ash melting behavior in agricultural biomass. J Therm Anal Calorim. 2015;121:421–7.

    Article  Google Scholar 

  30. Magdziarz A, Dalai AK, Koziński JA. Chemical composition, character and reactivity of renewable fuel ashes. Fuel. 2016;176:135–45.

    Article  CAS  Google Scholar 

  31. Magdziarz A, Wilk M, Gajek M, Nowak-Woźny D, Kopia A, Kalemba-Rec I, Koziński JA. Properties of ash generated during sewage sludge combustion: a multifaceted analysis. Energy. 2016;113:85–94.

    Article  CAS  Google Scholar 

  32. Carrillo MA, Staggenberg SA, Pineda JA. Washing sorghum biomass with water to improve its quality for combustion. Fuel. 2014;116:427–31.

    Article  CAS  Google Scholar 

  33. Telmo C, Lousada J, Moreira N. Proximate analysis, backwards stepwise regression between gross calorific value, ultimate and chemical analysis of wood. Bioresour Technol. 2010;101:3808–15.

    Article  CAS  Google Scholar 

  34. Gazulla MF, Rodrigo M, Orduña M, Gómez CM. Determination of carbon, hydrogen, nitrogen and sulfur in geological materials using elemental analyzers. Geostand Geoanal Res. 2012;36:201–17.

    Article  CAS  Google Scholar 

  35. Scholleberger CJ. Determination of soil organic matter. Soil Sci. 1945;59:53–6.

    Article  Google Scholar 

  36. Kerven GL, Menzies NW, Geyer MD. Soil carbon determination by high-temperature combustion-a comparison with dichromate oxidation procedures and the influence of charcoal and carbonate carbon on the measured value. Commun Soil Sci Plant Anal. 2000;31:1935–9.

    Article  CAS  Google Scholar 

  37. Saidur R, Abdelaziz EA, Demirbaş A, Hossain MS, Mekhilef S. A review on biomass as a fuel for boilers. Renew Sustain Energy Rev. 2011;15:2262–89.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of Andalusia Regional Government (2014–2015) to this investigation through Research Groups AGR 107 and TEP 204 is acknowledged. The company “Transportes y Contenedores Antonio Morales” is also acknowledged, which has facilitated the collection of samples in its Treatment Plant of greenhouse crops residues.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Garzón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, L., Garzón, E., Martínez-Blanes, J.M. et al. Thermal study of residues from greenhouse crops plant biomass. J Therm Anal Calorim 129, 1111–1120 (2017). https://doi.org/10.1007/s10973-017-6243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6243-2

Keywords

Navigation