Skip to main content
Log in

Effect of metallization time on thermal stability of copper-plated polylactide

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of metallization time on thermal stability of copper-plated polylactide (PLA) has been presented. The tests of oxidation onset temperature (OOT) and thermogravimetric analysis (TG) of metallized samples have been performed. Studies have shown that in the case of OOT, effect of metallization time is most pronounced for samples with a highly modified surface. This is due to an increase in contact area between the PLA and copper layer, leading to an increase in the catalytic activity of copper atoms relative to the oxidation process. In TG studies, the greatest effect of metallization time was observed for samples with the least modified surface. Observed effect is related to the variation in thickness of the deposited copper. Low heat capacity and a good thermal conductivity of copper lead to faster heating of the deposited layer, improve the heat transfer to the polymer bulk and thus faster increase in its temperature resulting in lowering of thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Auras R, Lim L-T, Selke SEM, Tsuji H, editors. Poly(lactic acid). Synthesis, structures, properties, processing, and applications. Hoboken: Wiley; 2010.

    Google Scholar 

  2. Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev. 2016;107:17–46.

    Article  CAS  Google Scholar 

  3. Castro-Aguirre E, Iñiguez-Franco F, Samsudin H, Fang X, Auras R. Poly(lactic acid)—mass production, processing, industrial applications and end of life. Adv Drug Deliv Rev. 2016;107:333–66.

    Article  CAS  Google Scholar 

  4. Nampoothiri KM, Nair NR, John RP. An overview of the recent developments in polylactide (PLA) research. Bioresour Technol. 2010;101:8493–501.

    Article  Google Scholar 

  5. Phetwarotai W, Aht-Ong D. Isothermal crystallization behaviors and kinetics of nucleated polylactide/poly(butylene adipate-co-terephthalate) blend films with talc. J Therm Anal Calorim. 2016;126:1797–808.

    Article  CAS  Google Scholar 

  6. Rytlewski P, Mróz W, Budner B, Moraczewski K, Malinowski R, Jagodziński B. Application of thermogravimetry in the assessment of coatings ability to be metallized. J Therm Anal Calorim. 2017;127:381–7.

    Article  CAS  Google Scholar 

  7. Vidović E, Faraguna F, Jukić A. Influence of inorganic fillers on PLA crystallinity and thermal properties. J Therm Anal Calorim. 2017;127:371–80.

    Article  Google Scholar 

  8. Saad GR, Elsawy MA, Aziz MSA. Nonisothermal crystallization behavior and molecular dynamics of poly(lactic acid) plasticized with jojoba oil. J Therm Anal Calorim. 2017;128:211–23.

    Article  CAS  Google Scholar 

  9. Tiganis BE, Burn LS, Davis P, Hill AJ. Thermal degradation of acrylonitrile butadiene–styrene (ABS) blends. Polym Degrad Stab. 2002;76:425–34.

    Article  CAS  Google Scholar 

  10. Tavares AC, Gulmine JV, Lepienski CM, Akcelrud L. The effect of accelerated aging on the surface mechanical properties of polyethylene. Polym Degrad Stab. 2003;81:367–73.

    Article  CAS  Google Scholar 

  11. Santonja-Blasco L, Ribes-Greus A, Alamo RG. Comparative thermal, biological and photodegradation kinetics of polylactide and effect on crystallization rates. Polym Degrad Stab. 2013;98:771–84.

    Article  CAS  Google Scholar 

  12. Fukushima K, Tabuani D, Arena M, Gennari M, Camino G. Effect of clay type and loading on thermal, mechanical properties and biodegradation of poly(lactic acid) nanocomposites. React Funct Polym. 2013;73(3):540–9.

    Article  CAS  Google Scholar 

  13. Yeon MJ, Ryu J, Ko JH, Yoon JS. Hydrolysis and thermal degradation of poly(l-lactide) in the presence of talc and modified talc. J Appl Polym Sci. 2013;129:1019–25.

    Article  Google Scholar 

  14. Liu Y, Chen W, Kim H. Synthesis, characterization, and hydrolytic degradation of polylactide/poly(ethylene glycol)/nano-silica composite films. J Macromol Sci Part A Pure Appl Chem. 2012;49(4):348–54.

    Article  CAS  Google Scholar 

  15. Ndazi BS, Karlsson S. Characterization of hydrolytic degradation of polylactic acid/rice hulls composites in water at different temperatures. Express Polym Lett. 2011;5(2):119–31.

    Article  CAS  Google Scholar 

  16. Olewnik-Kruszkowska E. Influence of the type of buffer solution on thermal and structural properties of polylactide-based composites. Polym Degrad Stab. 2016;129:87–95.

    Article  CAS  Google Scholar 

  17. Deroine M, Duigou AL, Corre YM, Gac YML, Davies P, Cesar G, Bruzaud S. Accelerated aging of polylactide in aqueous environments: comparative study between distilled water and seawater. Polym Degrad Stab. 2014;108:319–29.

    Article  CAS  Google Scholar 

  18. Kaya H, Özdemir E, Kaynak C, Hacaloglu J. Effects of nanoparticles on thermal degradation of polylactide/aluminium diethylphosphinate composites. J Anal Appl Pyrolysis. 2016;118:115–22.

    Article  CAS  Google Scholar 

  19. Kaya H, Hacaloglu J. Thermal degradation of polylactide/aluminium diethylphosphinate. J Anal Appl Pyrolysis. 2014;110:155–62.

    Article  CAS  Google Scholar 

  20. Chen BK, Shih CC, Chen AF. Ductile PLA nanocomposites with improved thermal stability. Compos A. 2012;43:2289–95.

    Article  CAS  Google Scholar 

  21. Lizundia E, Vilas JL, León LM. Crystallization, structural relaxation and thermal degradation in poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym. 2015;123:256–65.

    Article  CAS  Google Scholar 

  22. Márquez Y, Franco L, Puiggalí J. Thermal degradation studies of poly(trimethylene carbonate) blends with either polylactide or polycaprolactone. Thermochim Acta. 2012;550:65–75.

    Article  Google Scholar 

  23. Zweifel H, Maier RD, Schiller M. Plastics additives handbook. München: Carl Hanser; 2009.

    Google Scholar 

  24. Schramm R, Reinhardt A, Franke J. Capability of biopolymers in electronics manufacturing. In: 35th International Spring Seminar on Electronics Technology (ISSE), Bad Aussee, Austria; 2012.

  25. Moroi G. Influence of ion species on the thermal degradation of polyurethane interaction products with transition metal ions. J Anal Appl Pyrolysis. 2004;71(2):485–500.

    Article  CAS  Google Scholar 

  26. Chiu SJ, Cheng WH. Promotional effect of copper(II) chloride on the thermal degradation of poly(ethylene terephthalate). J Anal Appl Pyrolysis. 2000;56:131–43.

    Article  CAS  Google Scholar 

  27. Gorghiu LM, Jipa S, Zaharescu T, Setnescu R, Mihalcea I. The effect of metals on thermal degradation of polyethylenes. Polym Degrad Stab. 2004;84:7–11.

    Article  CAS  Google Scholar 

  28. Moraczewski K, Rytlewski P, Malinowski R, Tracz A, Żenkiewicz M. Influence of DC plasma modification on the selected properties and the geometrical surface structure of polylactide prior to autocatalytic metallization. Mater Chem Phys. 2015;153:135–44.

    Article  CAS  Google Scholar 

  29. Moraczewski K, Malinowski R, Rytlewski P, Żenkiewicz M. Autocatalytic metallization of polylactide. Polimery. 2015;60(7–8):492–501.

    Article  CAS  Google Scholar 

  30. Moraczewski K, Mróz W, Budner B, Żenkiewicz M. Laser modification of polylactide surface layer prior autocatalytic metallization. Surf Coat Technol. 2016;304:68–75.

    Article  CAS  Google Scholar 

  31. Yang J, Wan YQ, Wang SG, Tu CF, Cai Q, Bei JZ. Enhancing the cell affinity of macroporous poly(l-lactide) cell scaffold by a convenient surface modification method. Polym Int. 2003;52:1892–9.

    Article  CAS  Google Scholar 

  32. ISO 11357-6. Plastics; Differential scanning calorimetry (DSC); Part 6: determination of oxidation induction time (isothermal OIT) and oxidation induction temperature (dynamic OIT). Geneva: International Organization for Standardization; 2008.

    Google Scholar 

  33. ISO 11358-1:2014. Plastics—thermogravimetry (TG) of polymers; Part 1: general principles. Geneva: International Organization for Standardization; 2014.

    Google Scholar 

Download references

Acknowledgements

The project has been financed from the funds of the National Science Centre allocated upon Decision Number DEC-2011/01/N/ST8/04397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Moraczewski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraczewski, K. Effect of metallization time on thermal stability of copper-plated polylactide. J Therm Anal Calorim 129, 1697–1703 (2017). https://doi.org/10.1007/s10973-017-6382-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6382-5

Keywords

Navigation