Skip to main content
Log in

Effect of the homo- and heterobimetallic compounds derived from s-indacene on the thermal decomposition of ammonium perchlorate

Potential applications as burning rate catalysts

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This contribution describes an approaching about the catalytic activity of the homo- and heterobimetallic complexes derived from s-indacene on the thermal decomposition of ammonium perchlorate (abbreviate AP). The complexes, anti-[Cp*Fe-s-Ic′-FeCp*] (1), anti-[Cp*Fe-s-Ic′-CoCp*] (2), anti-[Cp*Fe-s-Ic′-NiCp*] (3) and anti-[Cp*Fe-s-Ic′-Mn(CO)3] (4) (with s-Ic′: 2,6-diethyl-4,8-dimethyl-s-indaceneiide), were compared with the catalytic activity of the catocene (cat) complex previously reported. Furthermore, in order to clarify the mechanism of the bimetallic compounds, it was tested ferrocene (Fc) compound as burning rate (BR) catalyst on the thermal decomposition of AP. These compounds shown a shift on the peak temperature to left and an increase released heats during thermal decomposition of AP. The burning rate catalytic activity of Fc, 1, 2, 3 and 4 on thermal decomposition of AP was examined by thermogravimetry and differential scanning calorimetry techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Zhou W, Wang L, Yu H, Zain-ul-Abdin Z-A, Yang X, Chen Q, et al. Synthesis of a novel ferrocene-based epoxy compound and its burning rate catalytic property. RSC Adv. 2016;6:53679–87. http://xlink.rsc.org/?DOI=C6RA07616E.

  2. Liu X, Zhao D, Bi F, Fan X, Zhao F, Zhang G, et al. Synthesis, characterization, migration studies and combustion catalytic performances of energetic ionic binuclear ferrocene compounds. J Organomet Chem. 2014;762:1–8. doi:10.1016/j.jorganchem.2014.03.011.

    Article  CAS  Google Scholar 

  3. Liu X, Zhang W, Zhang G, Gao Z. Low-migratory ionic ferrocene-based burning rate catalysts with high combustion catalytic efficiency. New J Chem. 2015;39:155–62. doi:10.1039/C4NJ01216J.

    Article  CAS  Google Scholar 

  4. Gao J, Wang L, Yu H, Xiao A, Ding W. Review recent research progress in burning rate catalysts. Propellants, Explos, Pyrotech. 2011;36:404–9.

    Article  CAS  Google Scholar 

  5. Tong R, Zhao Y, Wang L, Yu H, Ren F, Saleem M, et al. Recent research progress in the synthesis and properties of burning rate catalysts based on ferrocene-containing polymers and derivatives. J Organomet Chem. 2014;755:16–32. doi:10.1016/j.jorganchem.2013.12.052.

    Article  CAS  Google Scholar 

  6. Tang X. Advances in synthesis and burning rate catalysis of binuclear ferrocene derivatives. J Wuhan Inst Technol. 2012;34:19–25 (written in Chinese 双核二茂铁衍生物合成及燃速催化研究进展 唐孝明. Wuhan Inst. Technol. 2012;2869:19–25.).

    CAS  Google Scholar 

  7. Aguirre-Etcheverry P, O’Hare D. Electronic communication through unsaturated hydrocarbon bridges in homobimetallic organometallic complexes. Chem Rev. 2010;110:4839–64.

    Article  CAS  Google Scholar 

  8. Mac-Leod Carey D, Morales-Verdejo C, Muñoz-Castro A, Burgos F, Abril D, Adams C, et al. [Cp*Ru(s-indacene)RuCp*] and [Cp*Ru(s-indacene)RuCp*]+: Experimental and theoretical findings concerning the electronic structure of neutral and mixed valence organometallic systems. Polyhedron. 2010;29:1137–43. http://linkinghub.elsevier.com/retrieve/pii/S0277538709007347.

  9. Morales-Verdejo C, Martínez-Díaz I, Adams C, Araneda JF, Oehninger L, Mac-Leod Carey D, Muñoz-Castro A, Arratia-Pérez R, Chávez I, Manríquez JM. New mono and bimetallic iron complexes derived from partially methylated s-indacene. Evidence of a trinuclear iron s-indacene complex. Polyhedron 2014;69:15–24.

    Article  CAS  Google Scholar 

  10. Adams C, Morales-Verdejo C, Morales V, MacLeod-Carey D, Manríquez JM, Chávez I, et al. Heterobinuclear s-indacene rhodium complexes: synthesis and characterization. Eur J Inorg Chem. 2009;2009:784–91. doi:10.1002/ejic.200800920.

    Article  Google Scholar 

  11. Adams C, Araneda J, Morales C, Chavez I, Manriquez JM, Mac-Leod Carey D, et al. Preparation and ESR characterization of polyalkyl-s-indacenyl anion-radicals from polyalkyl-1,5-dilithio-s-indacenes. Inorganica Chim Acta. 2011;366:44–52. http://linkinghub.elsevier.com/retrieve/pii/S0020169310006894.

  12. Morales-Verdejo C, Martinez I, Mac-Leod Carey D, Chavez I, Manríquez JM, Matioszek D, et al. Synthesis and structure of some heterobimetallic complexes having a polyalkyl-s-indacenyl spacer. Inorganica Chim Acta. 2013;394:752–6. http://linkinghub.elsevier.com/retrieve/pii/S0020169312005774.

  13. Morales-Verdejo CA, Zarate X, Schott E, Correa S, Martinez-Díaz I. Photophysics of tungsten benzylidyne complexes derived form s-indacene: synthesis, characterization and DFT Studies. RSC Adv. 2015;5:25594–602.

    Article  CAS  Google Scholar 

  14. Morales-verdejo C, Schott E, Zarate X, Manriquez JM. Novel mono- and heterobimetallic chromium–nickel s-indacene complexes: synthesis, characterization, and DFT studies. Can J Chem. 2014;92:677–83.

    Article  CAS  Google Scholar 

  15. Fagan PJ, Ward MD, Calabrese JC. Molecular engineering of solid-state materials: organometallic building blocks. J Am Chem Soc. 1989;111:1698–719.

    Article  CAS  Google Scholar 

  16. Ward MD. Metal-metal interactions in binuclear complexes exhibiting mixed valency; molecular wires and switches. Chem Soc Rev. 1995;24:121–34. doi:10.1039/CS9952400121.

    Article  CAS  Google Scholar 

  17. Morales Verdejo C. Synthesis, characterization and studies of intermetallic communication within heterobinuclear carbonyled and metallocene complexes derived from s-indacene, Ph.D. thesis. Pontificia Universidad Católica de Chile; 2010.

  18. Dahrouch MR, Jara P, Mendez L, Portilla Y, Abril D, Alfonso G, et al. An effective and selective route to 1, 5-dihydropolyalkylated s-indacenes: characterization of their mono- and dianions by silylation. Structure of trans-1, 5-bis (trimethylsilyl)-2, 6-diethyl-4, 8-dimethyl-s-indacene. Organometallics. 2001;20:5591–7.

    Article  CAS  Google Scholar 

  19. Cheng Z, Zhang G, Fan X, Bi F, Zhao F, Zhang W, et al. Synthesis, characterization, migration and catalytic effects of energetic ionic ferrocene compounds on thermal decomposition of main components of solid propellants. Inorg Chim Acta. 2014;421:191–9. doi:10.1016/j.ica.2014.05.043.

    Article  CAS  Google Scholar 

  20. Paul F, Lapinte C. Organometallic molecular wires and other nanoscale-sized devices: an approach using the organoiron (dppe)Cp*Fe building block. Coord Chem Rev. 1998;178:431–509.

    Article  Google Scholar 

  21. Browne WR, Hage R, Vos JG. Tuning interaction in dinuclear ruthenium complexes: HOMO versus LUMO mediated superexchange through azole and azine bridges. Coord Chem Rev. 2006;250:1653–68. http://linkinghub.elsevier.com/retrieve/pii/S001085450500305X.

  22. Ernst S, Kasack V, Kaim W. What determines the comproportionation constant in molecule-bridged mixed-valence complexes? Evidence for the crucial role of the ligand LUMO in four ruthenium(II)ruthenium(III)dimers. Inorg Chem. 2002;27:1146.

    Article  Google Scholar 

  23. Robin MB, Day P. Mixed valence chemistry-a survey and classification. Adv Inorg Chem Radiochem. 1967;10:247–422.

    Article  CAS  Google Scholar 

  24. Marcus RA. On the theory of oxidation-reduction reactions involving electron transfer. 1. J Chem Phys. 1956;24:966–78.

    Article  CAS  Google Scholar 

  25. Marcus RA. Exchange reactions and electron transfer reactions including isotopic exchange. Theory of oxidation-reduction reactions involving electron transfer. Part 4.—A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt. Discuss Faraday Soc. 1960;29:21–31.

    Article  Google Scholar 

  26. Manriquez JM, Ward MD, Reiff WM, Calabrese JC, Jones NL, Carroll PJ, et al. Structural and physical properties of delocalized mixed-valent [Cp*M(pentalene)M′Cp*]n+ and [Cp*M(indacene)M′Cp*]n+ (M, M′ = Fe Co, Ni; n = 0, 1, 2) complexes. J Am Chem Soc. 1995;117:6182–93. doi:10.1021/ja00128a004.

    Article  CAS  Google Scholar 

  27. Xiao F, Feng F, Li L, Zhang D. Investigation on ultraviolet absorption properties, migration, and catalytic performances of ferrocene-modified hyper-branched polyesters. Propellants, Explos, Pyrotech. 2013;38:358–65.

    Article  Google Scholar 

  28. Liu L, He G, Wang Y, Liu P. Effect of catocene on the thermal decomposition of ammonium perchlorate and octogen. J Therm Anal Calorim. 2014;117:621–8. doi:10.1007/s10973-014-3792-5.

    Article  CAS  Google Scholar 

  29. Zhao H, Zhu X, Shang Y, Chen S, Li B, Bian Z. Ferrocene and [3]ferrocenophane-based β-diketonato copper(<scp>ii</scp>) and zinc(<scp>ii</scp>) complexes: synthesis, crystal structure, electrochemistry and catalytic effect on thermal decomposition of ammonium perchlorate. RSC Adv. 2016;6:34476–83. http://xlink.rsc.org/?DOI=C6RA02588A.

  30. Zhou W, Wang L, Yu H, Tong R, Chen Q, Wang J, et al. Progress on the synthesis and catalytic and anti-migration properties of ferrocene-based burning rate catalysts. Appl Organomet Chem. 2016;30:796–805. doi:10.1002/aoc.3502.

    Article  CAS  Google Scholar 

  31. Yang Q, Chen S, Xie G, Gao S. Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2 and effect on thermal decomposition of ammonium perchlorate. J Hazard Mater. 2011;197:199–203. http://www.ncbi.nlm.nih.gov/pubmed/21999985.

  32. Gao Y, Li H, Ke C, Xie L, Yuan Y. Design and synthesis of combustion catalysts bearing nitrogenous heterocyclic polynuclear ferrocenyl derivatives. Chem Propellants Polym Mater. 2010;8:34–7.

  33. Galwey AK, Jacobs PWM. The thermal decomposition of ammonium perchlorate in the presence of manganese dioxide. Trans Faraday Soc. 1959;55:1165–72. doi:10.1039/TF9595501165.

    Article  CAS  Google Scholar 

  34. Galwey AK, Mohamed MA. Nitryl perchlorate as the essential intermediate in the thermal decomposition of ammonium perchlorate. Nature. 1984;311:642–5. doi:10.1038/311642a0.

    Article  CAS  Google Scholar 

  35. Vyazovkin S, Wight CA. Kinetics of thermal decomposition of cubic ammonium perchlorate. Chem Mater. 1999;11:3386–93. doi:10.1021/cm9904382.

    Article  CAS  Google Scholar 

  36. University Z. Study on synthesis, characterization and application of ferro- cene-based compounds and ferrocene-based polymers and their grafted carbon materials. Ph.D. thesis. 2011.

  37. Wang L, Yu H, Saleem M, Akram M, Khalid H, Abbasi NM, et al. Journal of colloid and interface science synthesis of ethylene diamine-based ferrocene terminated dendrimers and their application as burning rate catalysts. J Colloid Interface Sci. 2017;487:38–51. doi:10.1016/j.jcis.2016.10.001.

    Article  Google Scholar 

  38. Korobeinichev OP, Ryzhak IA, Kuznetsov PN. Microscopic and electron-microscopic study of catalysis of ammonium perchlorate combustion. Combust Explos Shock Waves. 1972;8:259–63. doi:10.1007/BF00740459.

    Article  Google Scholar 

  39. Korobeinichev OP, Anisiforov GI, Shkarin AV. Kinetics of catalytic decomposition of ammonium perchlorate and its mixtures with polystyrene. Combust Explos Shock Waves. 1973;9:54–60. doi:10.1007/BF00740360.

    Article  Google Scholar 

  40. Abdin Z-u-, Yu H, Wang L, Saleem M, Khalid H, Abbasi NM, Akram M. Synthesis, anti-migration and burning rate catalytic mechanism of ferrocene-based compounds. Appl Organometal Chem. 2014;28:567–75.

    Article  Google Scholar 

  41. Shen SM. S.I. Chen and BBW. The thermal decomposition of ammonium perchlorate (AP). Containing a burning rate modifier. Thermochim Acta. 1993;223:135–43.

    Article  CAS  Google Scholar 

  42. Said AA. Thermal decomposition of ammonium metavanadate doped with iron, cobalt or nickel hydroxides. Therm Anal. 1991;37:959–62.

    Article  Google Scholar 

  43. Nema AK, Jain S, Sharma SK, Nema SK, Verma SK. Mechanistic aspect of thermal decomposition and burn rate of binder and oxidiser of AP/HTPB composite propellants comprising HYASIS-CAT. Int J Plast Tech. 2004;8:344–54.

    CAS  Google Scholar 

  44. Gao J, Guan F, Zhao Y. Preparation of ultrafine nickel powder and its catalytic dehydrogenation activity. Mater Chem Phys. 2001;71:215–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from FONDECYT Grants 1161297 and Laboratory Energy Materials from Institute of Research and Control (IDIC) of Chilean Army.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar Morales-Verdejo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DSC and TG curves are available in supporting information (DOCX 617 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Verdejo, C., Camarada, M.B., Arroyo, J.L. et al. Effect of the homo- and heterobimetallic compounds derived from s-indacene on the thermal decomposition of ammonium perchlorate. J Therm Anal Calorim 131, 353–361 (2018). https://doi.org/10.1007/s10973-017-6534-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6534-7

Keywords

Navigation