Skip to main content
Log in

The heat capacity of LaPO4 and PrPO4 nanowhiskers

Size effect and measurement features

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The heat capacity of monazite-type LaPO4 and PrPO4 nanocrystalline whiskers, with a diameter of 30 to 45 nm and length 1–1.5 μm, was measured by adiabatic and relaxation calorimetry. The essential difference in the heat capacity of nanowhiskers and bulk particle substances was observed only at a temperature above 100 K. The research revealed significant restrictions in the use of an adiabatic method (that uses helium as a heat-transfer gas) for measurements of nanoscale substances’ heat capacity, due to the considerable sorption of helium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996. doi:10.1126/science.271.5251.933.

    Google Scholar 

  2. Galaburda M, Bogatyrov V, Oranska O, Gunko V, Skubiszewska-Zieba J, Urubkov I. Synthesis and characterization of carbon composites containing Fe Co, Ni nanoparticles. J Therm Anal Calorim. 2015. doi:10.1007/s10973-015-4819-2.

    Google Scholar 

  3. Hosseini SG, Toloti SJH, Babaei K, Ghavi K. The affect of average particle size of nano-Co3O4 on the catalytic thermal decomposition of ammonium perchlorate particles. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5333-x.

    Google Scholar 

  4. Lin S, Dong X, Jia R, Yuan Y. Controllable synthesis and luminescence property of LnPO4 (Ln = La, Gd, Y) nanocrystals. J Mater Sci. 2010. doi:10.1007/s10854-009-9866-7.

    Google Scholar 

  5. Yu L, Li D, Yue M, Yao J, Lu S. Dependence of morphology and photoluminescent properties of GdPO4:Eu3+ nanostructures on synthesis condition. Chem Phys. 2006. doi:10.1016/j.chemphys.2006.03.008.

    Google Scholar 

  6. Levchenko AA, Li G, Boerio-Goates J, Woodfield BF, Navrotsky A. TiO2 stability landscape: polymorphism, surface energy, and bound water energetics. Chem Mater. 2006. doi:10.1021/cm061183c.

    Google Scholar 

  7. Majzlan J, Navrotsky A, Casey WH. Surface enthalpy of boehmite. Clays Clay Miner. 2000. doi:10.1346/CCMN.2000.0480611.

    Google Scholar 

  8. Diakonov I, Khodakovsky I, Schott J, Sergeeva E. Thermodynamic properties of iron oxides and hydroxides. I. Surface and bulk thermodynamic properties of goethite (α-FeOOH) up to 500 K. Eur J Mineral. 1994. doi:10.1127/ejm/6/6/0967.

    Google Scholar 

  9. Boerio-Goates J, Li G, Li L, Walker TF, Parry T, Woodfield BF. Surface water and the origin of the positive excess specific heat for 7 nm rutile and anatase nanoparticles. Nano Lett. 2006. doi:10.1021/nl0600169.

    Google Scholar 

  10. Levchenko AA, Kolesnikov AI, Ross NL, Boerio-Goates J, Woodfield BF, Li G, Navrotsky A. Dynamics of water confined on a TiO2 (anatase) surface. J Phys Chem. 2007. doi:10.1021/jp076033j.

    Google Scholar 

  11. Shi Q, Boerio-Goates J, Woodfield K, Rytting M, Pulsipher K, Spencer EC, Ross NL, Navrotsky A, Woodfield BF. Heat capacity studies of surface water confined on cassiterite (SnO2) nanoparticles. J Phys Chem C. 2012. doi:10.1021/jp2088862.

    Google Scholar 

  12. Spencer EC, Ross NL, Parker SF, Kolesnikov AI, Woodfield BF, Woodfield K, Rytting MC, Boerio-Goates J, Navrotksy A. Influence of particle size and water coverage on the thermodynamic properties of water confined on the surface of SnO2 cassiterite nanoparticles. J Phys Chem C. 2011. doi:10.1021/jp202518p.

    Google Scholar 

  13. Boerio-Goates J, Smith SJ, Liu S, Lang BE, Li G, Woodfield BF, Navrotsky A. Characterization of surface defect sites on bulk and nanophase anatase and rutile TiO2 by low-temperature specific heat. J Phys Chem. 2013. doi:10.1021/jp310993w.

    Google Scholar 

  14. Snow CL, Shi Q, Boerio-Goates J, Woodfield BF. Heat capacity studies of nanocrystalline magnetite (Fe3O4). J Phys Chem C. 2010. doi:10.1021/jp1072704.

    Google Scholar 

  15. Wang L, Vu K, Navrotsky A, Stevens R, Woodfield BF, Boerio-Goates J. Calorimetric study: surface energetics and the magnetic transition in nanocrystalline CoO. Chem Mater. 2004. doi:10.1021/cm049040i.

    Google Scholar 

  16. Firsching FH, Brune SN. Solubility products of the trivalent rare-earth phosphates. J Chem Eng Data. 1991. doi:10.1021/je00001a028.

    Google Scholar 

  17. Hikichi Y, Nomura T. Melting temperatures of monazite and xenotime. J Am Ceram Soc. 1997. doi:10.1111/j.1151-2916.1987.tb04890.x.

    Google Scholar 

  18. Hikichi Y, Ota T, Hattori T. Thermal, mechanical and chemical properties of sintered monazite-(La, Ce, Nd or Sm). Mineral J. 1997. doi:10.2465/minerj.19.123.

    Google Scholar 

  19. Bryukhanova KI, Nikiforova GE, Gavrichev KS. Synthesis and study of anhydrous lanthanide orthophosphate (Ln = La, Pr, Nd, Sm) nanowhiskers. Nanosyst: Phys Chem Math. 2016. doi:10.17586/2220-8054-2016-7-3-451-458.

    Google Scholar 

  20. Bauer JD, Hirsch A, Bayarjargal L, Peters L, Roth G, Winkler B. Schottky contribution to the heat capacity of monazite type (La, Pr)PO4 from low temperature calorimetry and fluorescence measurements. Chem Phys Lett. 2016. doi:10.1016/j.cplett.2016.05.012.

    Google Scholar 

  21. Gavrichev KS, Ryumin MA, Tyurin AV, Gurevich VM, Komissarova LN. Refined heat capacity of LaPO4 in the temperature range 0–1600 K. Thermochim Acta. 2008. doi:10.1016/j.tca.2008.05.004.

    Google Scholar 

  22. Gavrichev KS, Gurevich VM, Ryumin MA, Tyrin AV, Komissarova LN. Low-temperature heat capacity and thermodynamic properties of PrPO4. Geochem Int. 2016. doi:10.1134/S001670291602004X.

    Google Scholar 

  23. Thiriet C, Konings RJM, Javorský P, Magnani N. The low temperature heat capacity of LaPO4 and GdPO4, the thermodynamic functions of the monazite-type LnPO4 series. J Chem Thermodyn. 2005. doi:10.1016/j.jct.2004.07.031.

    Google Scholar 

  24. Wang L, Tan Z, Meng S, Liang D, Liu B. Low temperature heat capacity and thermal stability of nanocrystalline nickel. Thermochim Acta. 2002. doi:10.1016/S0040-6031(01)00724-9.

    Google Scholar 

  25. Patterson D, Morrison JA, Thompson FW. A low temperature particle size effect on the heat capacity of sodium chloride. Can J Chem. 1955. doi:10.1139/v55-027.

    Google Scholar 

  26. Gavrichev KS, Smirnova NN, Gurevich VM, Danilov VP, Tyurin AV, Ryumin MA, Komissarova LN. Heat capacity and thermodynamic functions of LuPO4 in the range 0–320 K. Thermochim Acta. 2006. doi:10.1016/j.tca.2006.05.019.

    Google Scholar 

  27. Gurevich VM, Kuskov OL, Gavrichev KS, Tyurin AV. Heat capacity and thermodynamic functions of epsomite MgSO4·7H2O at 0–303K. Geochem Int. 2007. doi:10.1134/S0016702907020103.

    Google Scholar 

Download references

Acknowledgements

The equipment of the Joint Research Centre of IGIC RAS and Thermodynamic Centre of Precise Calorimetric Research of Lobachevsky National Research State University of Nizhny Novgorod was used to carry out this investigation. The authors thank Dr A.E. Baranchikov for the SEM study of RE orthophosphates.

Funding

This study was carried out as part of the State Assignment on fundamental research of the Kurnakov Institute of General and Inorganic Chemistry and Research Programme of the Presidium of the Russian Academy of Sciences «Scientific foundations of new functional materials production» and was funded by Grant Number 0088-2014-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. I. Bryukhanova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bryukhanova, K.I., Nikiforova, G.E., Tyurin, A.V. et al. The heat capacity of LaPO4 and PrPO4 nanowhiskers. J Therm Anal Calorim 132, 337–342 (2018). https://doi.org/10.1007/s10973-017-6593-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6593-9

Keywords

Navigation