Skip to main content
Log in

Rice husk as nanoadditive in diesel–biodiesel fuel blends used in diesel engine

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The fossil fuels are gradually reducing due to the increase in energy users and prices. In India the biodiesel is one of the best available renewable energy sources to satisfy the energy demand and environmentally friendly nature. In the present work, non-edible feedstock of pongamia pinnata seed oil is used for biodiesel production. The biodiesel was prepared by transesterification method with methanol in the existence of KOH as catalyst, and in addition of rice husk (RH) nano-organic additive is used in biodiesel production. The RH nanoparticles are characterized by using scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction and the CHNS elemental analysis. TEM results confirm that the RH nanoparticle has size of around 20 nm. The pure diesel, 20% biodiesel 80% diesel and 20% biodiesel 80% diesel with 0.1% RH nanoparticles are used as fuels in the diesel engine. The performance and emission characteristics of the IC engine are studied. The results showed that the RH nanoparticles added with pongamia seed oil methyl ester improve the brake thermal efficiency, reduced CO, HC emissions and lowered the NOx emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

RH:

Rice husk

CI:

Compression ignition

CO:

Carbon monoxide

CO2 :

Carbon dioxide

DF:

Diesel fuel

FFA:

Free fatty acid

HC:

Hydrocarbon

IMEP:

Indicated mean effective pressure

NOx :

Nitrogen oxides

Btdc:

Before top dead center

KOH:

Potassium hydroxide

NaOH:

Sodium hydroxide

H2SO4 :

Sulfuric acid

NaCl:

Sodium chloride

References

  1. BLA Prabhavathi Devi, Vijai Kumar Reddy T, Vijaya Lakshmi K, Prasad RBN. A green recyclable SO3H-carbon catalyst derived from glycerol for the production of biodiesel from FFA-containing karanja (Pongamia glabra) oil in a single step. Bioresour Technol. 2014;153:370–3.

    Article  Google Scholar 

  2. Souza G De, Jose V, Maria M. Influence of the purification process on the stability of Jatropha curcas biodiesel. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-016-5861-4.

    Google Scholar 

  3. Kumar R, Ravi Kumar G, Chandrashekar N. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production. Bioresour Technol. 2011;102:6617–20.

    Article  CAS  Google Scholar 

  4. Hossain AK, Davies PA. Plant oils as fuels for compression ignition engines: a technical review and life-cycle analysis. Renew Energy. 2010;35:1–13.

    Article  CAS  Google Scholar 

  5. Tutunea D. Thermal investigation of biodiesel blends derived from rapeseed oil. J Therm Anal Calorim. 2012;. doi:10.1007/s10973-012-2213-x.

    Google Scholar 

  6. Atabani AE, César ADS. Calophyllum inophyllum L.—a prospective non-edible biodiesel feedstock. Study of biodiesel production, properties, fatty acid composition, blending and engine performance. Renew Sustain Energy Rev. 2014;37:644–55.

    Article  CAS  Google Scholar 

  7. Singh V, Hameed BH, Chandra Y. Economically viable production of biodiesel from a rural feedstock from eastern India, P. pinnata oil using a recyclable laboratory synthesized heterogeneous catalyst. Energy Convers Manag. 2016;122:52–62.

    Article  CAS  Google Scholar 

  8. Ayswarya EP, Vidya Francis KF, Renju VS, Thachil ET. Rice husk ash—a valuable reinforcement for high density polyethylene. Mater Des. 2012;41:1–7.

    Article  CAS  Google Scholar 

  9. Yoon SJ, Son YI, Kim YK, Lee JG. Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renew Energy. 2012;42:163–7.

    Article  CAS  Google Scholar 

  10. Murugesan A, et al. Production and analysis of bio-diesel from non-edible oils—a review. Renew Sustain Energy Rev. 2009;13:825–34.

    Article  CAS  Google Scholar 

  11. Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci. 2007;33:233–71.

    Article  CAS  Google Scholar 

  12. Mukta N, Murthy IYLN, Sripal P. Variability assessment in Pongamia pinnata (L.) Pierre germplasm for biodiesel traits. Ind Crops Prod. 2009;29:536–40.

    Article  CAS  Google Scholar 

  13. Mukta N, Sreevalli Y. Propagation techniques, evaluation and improvement of the biodiesel plant, Pongamia pinnata (L.) Pierre—a review. Ind Crops Prod. 2010;31:1–12.

    Article  Google Scholar 

  14. Ashraful AM, et al. Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: a review. Energy Convers Manag. 2014;80:202–28.

    Article  CAS  Google Scholar 

  15. Hebbal OD, Reddy KV, Rajagopal K. Performance characteristics of a diesel engine with deccan hemp oil. Fuel. 2006;85:2187–94.

    Article  CAS  Google Scholar 

  16. Demirbas A. Progress and recent trends in biodiesel fuels. Energy Convers Manag. 2009;50:14–34.

    Article  CAS  Google Scholar 

  17. Reda AA, et al. Gas phase carbonyl compounds in ship emissions: differences between diesel fuel and heavy fuel oil operation. Atmos Environ. 2014;94:467–78.

    Article  CAS  Google Scholar 

  18. Ramadhas AS, Muraleedharan C, Jayaraj S. Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil. Renew Energy. 2005;30:1789–800.

    Article  CAS  Google Scholar 

  19. Sureshkumar K, Velraj R, Ganesan R. Performance and exhaust emission characteristics of a CI engine fueled with Pongamia pinnata methyl ester (PPME) and its blends with diesel. Renew Energy. 2008;33:2294–302.

    Article  CAS  Google Scholar 

  20. Candeia RA, et al. Thermal and rheological behavior of diesel and methanol biodiesel blends. J Therm Anal Calorim. 2007;87:653–6.

    Article  CAS  Google Scholar 

  21. Murugesan A, Umarani C, Subramanian R, Nedunchezhian N. Bio-diesel as an alternative fuel for diesel engines—a review. Renew Sustain Energy Rev. 2009;13:653–62.

    Article  CAS  Google Scholar 

  22. Meher LC, Vidya Sagar D, Naik SN. Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev. 2006;10:248–68.

    Article  CAS  Google Scholar 

  23. Naik M, Meher LC, Naik SN, Das LM. Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass Bioenerg. 2008;32:354–7.

    Article  CAS  Google Scholar 

  24. Homem E, Cavalcanti S, Aure M. Analysis of soybean biodiesel additive with different formulations of oils and fats. J Therm Anal Calorim. 2015;. doi:10.1007/s10973-015-4772-0.

    Google Scholar 

  25. Jain A, Tripathi SK. Fabrication and characterization of energy storing supercapacitor devices using coconut shell based activated charcoal electrode. Mater Sci Eng B Solid State Mater Adv Technol. 2014;183:54–60.

    Article  CAS  Google Scholar 

  26. Chen KT, et al. Rice husk ash as a catalyst precursor for biodiesel production. J Taiwan Inst Chem Eng. 2013;44:622–9.

    Article  CAS  Google Scholar 

  27. Roy MM, Dutta A, Corscadden K. An experimental study of combustion and emissions of biomass pellets in a prototype pellet furnace. Appl Energy. 2013;108:298–307.

    Article  CAS  Google Scholar 

  28. Kuprianov VI, Kaewklum R, Sirisomboon K, Arromdee P, Chakritthakul S. Combustion and emission characteristics of a swirling fluidized-bed combustor burning moisturized rice husk. Appl Energy. 2010;87:2899–906.

    Article  CAS  Google Scholar 

  29. Takase M, et al. An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew Sustain Energy Rev. 2015;43:495–520.

    Article  CAS  Google Scholar 

  30. Zhang ZH, Balasubramanian R. Influence of butanol addition to diesel-biodiesel blend on engine performance and particulate emissions of a stationary diesel engine. Appl Energy. 2014;119:530–6.

    Article  CAS  Google Scholar 

  31. Shahir VK, Jawahar CP, Suresh PR. Comparative study of diesel and biodiesel on CI engine with emphasis to emissions—a review. Renew Sustain Energy Rev. 2015;45:686–97.

    Article  CAS  Google Scholar 

  32. El Sherbiny SA, Refaat SA, El Sheltawy ST. Production of biodiesel using the microwave technique. J Adv Res. 2010;1:309–14.

    Article  Google Scholar 

  33. Karmee SK, Chadha A. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresour Technol. 2005;96:1425–9.

    Article  CAS  Google Scholar 

  34. Chandrasekaran V, Arthanarisamy M, Nachiappan P, Dhanakotti S, Moorthy B. The role of nano additives for biodiesel and diesel blended transportation fuels. Transp Res Part D Transp Environ. 2016;46:145–56.

    Article  Google Scholar 

  35. Dhawane SH, Kumar T, Halder G. Parametric effects and optimization on synthesis of iron (II) doped carbonaceous catalyst for the production of biodiesel. Energy Convers Manag. 2016;122:310–20.

    Article  CAS  Google Scholar 

  36. Huang W, Tsai H, Lee W. Preparation and properties of thermosensitive organic-inorganic hybrid gels containing modified nanosilica. Polym Compos. 2010;31:1712–21. doi:10.1002/pc.20961.

    Article  CAS  Google Scholar 

  37. Elango T, Kannan A, Murugavel KK. Performance study on single basin single slope solar still with different water nanofluids. Desalination. 2015;360:45–51.

    Article  CAS  Google Scholar 

  38. Prabakaran B, Udhoji A. Experimental investigation into effects of addition of zinc oxide on performance, combustion and emission characteristics of diesel-biodiesel-ethanol blends in CI engine. Alex Eng J. 2016;55:3355–62.

    Article  Google Scholar 

  39. Yang WM, et al. Impact of emulsion fuel with nano-organic additives on the performance of diesel engine. Appl Energy. 2013;112:1206–12.

    Article  CAS  Google Scholar 

  40. Purushothaman K, Nagarajan G. Performance, emission and combustion characteristics of a compression ignition engine operating on neat orange oil. Renew Energy. 2009;34:242–5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Chemical Engineering Department, Central Leather Research Institute, Chennai, Tamil Nadu, India, for biodiesel production. Also like to thank Dr. Sivanthi Aditanar College of Engineering, Tamil Nadu, India, for providing the necessary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vinukumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinukumar, K., Azhagurajan, A., Vettivel, S.C. et al. Rice husk as nanoadditive in diesel–biodiesel fuel blends used in diesel engine. J Therm Anal Calorim 131, 1333–1343 (2018). https://doi.org/10.1007/s10973-017-6692-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6692-7

Keywords

Navigation