Skip to main content
Log in

Development of a new density correlation for carbon-based nanofluids using response surface methodology

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Density is among the fundamental thermo-physical characteristics of fluids that are examined prior to carrying out performance analysis of the fluid. In this study, the effect of the design variables on the density of nanofluids was studied using response surface methodology (RSM). The quadratic model produced by RSM was employed to determine the performance factors, i.e., mass concentration and temperature with reasonably good accuracy. Improved experimental correlations were proposed for the density prediction of the carbon-based nanofluids based on the experimental data. Experimentally measured densities of two different nanofluids at the nanoparticle mass concentration of up to 0.1% and the temperature range of 20–40 °C were examined. The improvement in densities compared to the density of base fluid at 20 and 40 °C is approximately 0.15% for 0.1% fraction of MWCNT–COOH nanoparticles. Additionally, the densities of F-GNP nanofluids are increased by 0.056% compared to the density of distilled water. As a final point, the RSM results were compared with the results which got from the empirical data. It was detected that the optimal RSM model is accurate and the absolute maximum deviation measured values from the predicted densities of MWCNT–COOH and F-GNP nanofluids are 0.012 and 0.009%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cheng L. Nanofluid heat transfer technologies. Recent Pat Eng. 2009;3(1):1–7.

    Article  CAS  Google Scholar 

  2. Chol S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ Fed. 1995;231:99–106.

    Google Scholar 

  3. Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E, et al. Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag. 2015;100:419–28.

    Article  CAS  Google Scholar 

  4. Khoshvaght-Aliabadi M. Influence of different design parameters and Al2O3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels. Energy Convers Manag. 2014;88:96–105.

    Article  CAS  Google Scholar 

  5. Yarmand H, Ahmadi G, Gharehkhani S, Kazi SN, Safaei MR, Alehashem MS, et al. Entropy generation during turbulent flow of zirconia-water and other nanofluids in a square cross section tube with a constant heat flux. Entropy. 2014;16(11):6116–32.

    Article  Google Scholar 

  6. Peyghambarzadeh S, Hashemabadi S, Chabi A, Salimi M. Performance of water based CuO and Al2O3 nanofluids in a Cu–Be alloy heat sink with rectangular microchannels. Energy Convers Manag. 2014;86:28–38.

    Article  CAS  Google Scholar 

  7. H-t Zhu, Y-s Lin, Y-s Yin. A novel one-step chemical method for preparation of copper nanofluids. J Colloid Interface Sci. 2004;277(1):100–3.

    Article  Google Scholar 

  8. Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2014;117(2):675–81.

    Article  Google Scholar 

  9. Navaei A, Mohammed H, Munisamy K, Yarmand H, Gharehkhani S. Heat transfer enhancement of turbulent nanofluid flow over various types of internally corrugated channels. Powder Technol. 2015;286:332–41.

    Article  CAS  Google Scholar 

  10. Montazer E, Salami E, Yarmand H, Kazi S, Badarudin A editors. The RSM approach to develop a new correlation for density of metal-oxide aqueous nanofluids. In: IOP conference series: materials science and engineering. IOP Publishing; 2017.

  11. Choi S, Zhang Z, Yu W, Lockwood F, Grulke E. Anomalous thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001;79(14):2252–4.

    Article  CAS  Google Scholar 

  12. Turgut A, Tavman I, Chirtoc M, Schuchmann H, Sauter C, Tavman S. Thermal conductivity and viscosity measurements of water-based TiO2 nanofluids. Int J Thermophys. 2009;30(4):1213–26.

    Article  CAS  Google Scholar 

  13. Karthikeyan N, Philip J, Raj B. Effect of clustering on the thermal conductivity of nanofluids. Mater Chem Phys. 2008;109(1):50–5.

    Article  CAS  Google Scholar 

  14. Das SK, Putra N, Thiesen P, Roetzel W. Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf. 2003;125(4):567–74.

    Article  CAS  Google Scholar 

  15. Yarmand H, Gharehkhani S, Shirazi SFS, Amiri A, Alehashem MS, Dahari M, et al. Experimental investigation of thermo-physical properties, convective heat transfer and pressure drop of functionalized graphene nanoplatelets aqueous nanofluid in a square heated pipe. Energy Convers Manag. 2016;114:38–49.

    Article  CAS  Google Scholar 

  16. Ahammed N, Asirvatham LG, Wongwises S. Effect of volume concentration and temperature on viscosity and surface tension of graphene–water nanofluid for heat transfer applications. J Therm Anal Calorim. 2016;123(2):1399–409.

    Article  CAS  Google Scholar 

  17. Sudeep P, Taha-Tijerina J, Ajayan P, Narayanan T, Anantharaman M. Nanofluids based on fluorinated graphene oxide for efficient thermal management. RSC Adv. 2014;4(47):24887–92.

    Article  CAS  Google Scholar 

  18. Hwang Y, Ahn Y, Shin H, Lee C, Kim G, Park H, et al. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Curr Appl Phys. 2006;6(6):1068–71.

    Article  Google Scholar 

  19. Nikkhah Z, Karimipour A, Safaei MR, Forghani-Tehrani P, Goodarzi M, Dahari M, et al. Forced convective heat transfer of water/functionalized multi-walled carbon nanotube nanofluids in a microchannel with oscillating heat flux and slip boundary condition. Int Commun Heat Mass Transf. 2015;68:69–77.

    Article  CAS  Google Scholar 

  20. Estellé P, Halelfadl S, Maré T. Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids. J Therm Anal Calorim. 2017;127(3):2075–81.

    Article  Google Scholar 

  21. Timofeeva EV, Moravek MR, Singh D. Improving the heat transfer efficiency of synthetic oil with silica nanoparticles. J Colloid Interface Sci. 2011;364(1):71–9.

    Article  CAS  Google Scholar 

  22. Montazer E, Yarmand H, Salami E, Muhamad MR, Kazi S, Badarudin A. A brief review study of flow phenomena over a backward-facing step and its optimization. Renew Sustain Energy Rev. 2018;82:994–1005.

    Article  CAS  Google Scholar 

  23. Yu W, Xie H, Bao D. Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology. 2009;21(5):055705.

    Article  Google Scholar 

  24. Zheng R, Gao J, Wang J, Feng S-P, Ohtani H, Wang J, et al. Thermal percolation in stable graphite suspensions. Nano Lett. 2011;12(1):188–92.

    Article  Google Scholar 

  25. Ding Y, Alias H, Wen D, Williams RA. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf. 2006;49(1):240–50.

    Article  CAS  Google Scholar 

  26. Yu W, Xie H, Wang X, Wang X. Significant thermal conductivity enhancement for nanofluids containing graphene nanosheets. Phys Lett A. 2011;375(10):1323–8.

    Article  CAS  Google Scholar 

  27. Lamas B, Abreu B, Fonseca A, Martins N, Oliveira M. Assessing colloidal stability of long term MWCNT based nanofluids. J Colloid Interface Sci. 2012;381(1):17–23.

    Article  CAS  Google Scholar 

  28. Amiri A, Shanbedi M, Yarmand H, Arzani HK, Gharehkhani S, Montazer E, et al. Laminar convective heat transfer of hexylamine-treated MWCNTs-based turbine oil nanofluid. Energy Convers Manag. 2015;105:355–67.

    Article  CAS  Google Scholar 

  29. Ren Y, Xie H, Cai A. Effective thermal conductivity of nanofluids containing spherical nanoparticles. J Phys D Appl Phys. 2005;38(21):3958.

    Article  CAS  Google Scholar 

  30. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48(2):363–71.

    Article  CAS  Google Scholar 

  31. Chandrasekar M, Suresh S, Bose AC. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci. 2010;34(2):210–6.

    Article  CAS  Google Scholar 

  32. Papari MM, Yousefi F, Moghadasi J, Karimi H, Campo A. Modeling thermal conductivity augmentation of nanofluids using diffusion neural networks. Int J Therm Sci. 2011;50(1):44–52.

    Article  CAS  Google Scholar 

  33. Hosseini SM, Moghadassi A, Henneke DE. A new dimensionless group model for determining the viscosity of nanofluids. J Therm Anal Calorim. 2010;100(3):873–7.

    Article  Google Scholar 

  34. Yarmand H, Gharehkhani S, Shirazi SFS, Amiri A, Montazer E, Arzani HK, et al. Nanofluid based on activated hybrid of biomass carbon/graphene oxide: synthesis, thermo-physical and electrical properties. Int Commun Heat Mass Transf. 2016;72:10–5.

    Article  CAS  Google Scholar 

  35. Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nanofluids in forced convection flows. Int J Heat Fluid Flow. 2005;26(4):530–46.

    Article  CAS  Google Scholar 

  36. Pastoriza-Gallego M, Casanova C. Legido Ja, Piñeiro M. CuO in water nanofluid: influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilib. 2011;300(1):188–96.

    Article  CAS  Google Scholar 

  37. Vajjha R, Das D, Mahagaonkar B. Density measurement of different nanofluids and their comparison with theory. Pet Sci Technol. 2009;27(6):612–24.

    Article  CAS  Google Scholar 

  38. Karimi H, Yousefi F. Application of artificial neural network–genetic algorithm (ANN–GA) to correlation of density in nanofluids. Fluid Phase Equilib. 2012;336:79–83.

    Article  CAS  Google Scholar 

  39. Sánchez N, Martínez M, Aracil J. Selective esterification of glycerine to 1-glycerol monooleate. 2. Optimization studies. Ind Eng Chem Res. 1997;36(5):1529–34.

    Article  Google Scholar 

  40. Box GE, Draper NR. Empirical model-building and response surfaces. New York: Wiley; 1987.

    Google Scholar 

  41. Sadollah A, Ghadimi A, Metselaar IH, Bahreininejad A. Prediction and optimization of stability parameters for titanium dioxide nanofluid using response surface methodology and artificial neural networks. Sci Eng Compos Mater. 2013;20(4):319–30.

    Article  CAS  Google Scholar 

  42. Low KL, Tan SH, Zein SHS, McPhail DS, Boccaccini AR. Optimization of the mechanical properties of calcium phosphate/multi-walled carbon nanotubes/bovine serum albumin composites using response surface methodology. Mater Des. 2011;32(6):3312–9.

    Article  CAS  Google Scholar 

  43. Hassan AM, Alrashdan A, Hayajneh MT, Mayyas AT. Prediction of density, porosity and hardness in aluminum–copper-based composite materials using artificial neural network. J Mater Process Technol. 2009;209(2):894–9.

    Article  CAS  Google Scholar 

  44. Singh R, Bhoopal R, Kumar S. Prediction of effective thermal conductivity of moist porous materials using artificial neural network approach. Build Environ. 2011;46(12):2603–8.

    Article  Google Scholar 

  45. Sumpter BG, Noid DW. On the design, analysis, and characterization of materials using computational neural networks. Annu Rev Mater Sci. 1996;26(1):223–77.

    Article  CAS  Google Scholar 

  46. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    Article  CAS  Google Scholar 

  47. Kalil S, Maugeri F, Rodrigues M. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem. 2000;35(6):539–50.

    Article  CAS  Google Scholar 

  48. Montazer E, Mirzaei M, Salami E, Ward T, Romli F, Kazi S, editors. Optimization of a synthetic jet actuator for flow control around an airfoil. IOP conference series: materials science and engineering. IOP Publishing; 2016.

  49. Rao KJ, Kim C-H, Rhee S-K. Statistical optimization of medium for the production of recombinant hirudin from Saccharomyces cerevisiae using response surface methodology. Process Biochem. 2000;35(7):639–47.

    Article  CAS  Google Scholar 

  50. Desai KM, Survase SA, Saudagar PS, Lele S, Singhal RS. Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem Eng J. 2008;41(3):266–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge UMRG Grant RP045C-17AET, University of Malaya, Malaysia, for support to conduct this research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elham Montazer or S. N. Kazi.

Ethics declarations

Conflict of interest

All authors have received research grants from University of Malaya. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montazer, E., Salami, E., Yarmand, H. et al. Development of a new density correlation for carbon-based nanofluids using response surface methodology. J Therm Anal Calorim 132, 1399–1407 (2018). https://doi.org/10.1007/s10973-018-6978-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-6978-4

Keywords

Navigation