Skip to main content
Log in

Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, a numerical macroscopic approach has been employed to analyze nanofluid entropy generation and turbulent flow through a circular heat exchanger with an innovative swirl flow device. A homogenous model was considered for nanofluid. Minimizing entropy generation can be considered as a very important goal for designing a heat exchanger, so we focus on this factor in the present attempt. Simulations were presented to show the influences of the geometric parameter (revolution angle) and inlet velocity on hydrothermal and second-law treatment. Related correlations for thermal and frictional entropy parameters as well as Bejan number have been presented. Outputs reveal that augmenting revolution angle increases the frictional entropy generation. Increasing secondary flows leads to a reduction in thermal entropy generation due to a decrement in thermal boundary layer thickness. By improving convective flow, Bejan number reduces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(S_{\text{gen,f}}\) :

Viscous entropy generation

Nu :

Nusselt number

T :

Fluid temperature

Re :

Reynolds number

P :

Pressure

L :

Length of pipe

f :

Darcy friction factor

Pr :

Prandtl number

\(S_{\text{gen,th}}\) :

Thermal entropy generation

D :

Pipe diameter

\(\alpha\) :

Thermal diffusivity

\(\phi\) :

Concentration of nanofluid

\(\mu\) :

Dynamic viscosity of nanofluid

ρ :

Density

β :

Revolution angle

s:

Particles

nf:

Working fluid

f:

Fluid

References

  1. Rashidi S, Mahian O, Mohseni Languri E. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2018;131:2027–39.

    Article  CAS  Google Scholar 

  2. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of Nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    Article  CAS  Google Scholar 

  3. Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.

    Article  CAS  Google Scholar 

  4. Sheikholeslami M, Darzi M, Li Z. Experimental investigation for entropy generation and exergy loss of nano-refrigerant condensation process. Int J Heat Mass Transf. 2018;125:1087–95.

    Article  CAS  Google Scholar 

  5. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7093-2.

    Article  Google Scholar 

  6. Jafaryar M, Sheikholeslami M, Li Z. CuO–water nanofluid flow and heat transfer in a heat exchanger tube with twisted tape turbulator. Powder Technol. 2018;336:131–43.

    Article  CAS  Google Scholar 

  7. Haq RU, Hommouch Z, Hussain ST, Mekkaoui T. MHD mixed convection flow along a vertically heated sheet. J Hydrogen Energy. 2017;42(24):15925–32.

    Article  Google Scholar 

  8. Qi C, Liu M, Wang G, Pan Y, Liang L. Experimental research on stabilities, thermophysical properties and heat transfer enhancement of nanofluids in heat exchanger systems. Chin J Chem Eng. 2018. https://doi.org/10.1016/j.cjche.2018.03.021.

    Article  Google Scholar 

  9. Sheikholeslami M, Jafaryar M, Saleem S, Li Z, Shafee A, Jiang Y. Nanofluid heat transfer augmentation and exergy loss inside a pipe equipped with innovative turbulators. Int J Heat Mass Transf. 2018;126:156–63.

    Article  CAS  Google Scholar 

  10. Zheng N, Liu P, Liu Z, Liu W. Numerical simulation and sensitivity analysis of heat transfer enhancement in a flat heat exchanger tube with discrete inclined ribs. Int J Heat Mass Transf. 2017;112:509–20.

    Article  Google Scholar 

  11. Sajjadi H, Kefayati GHR. MHD turbulent and laminar natural convection in a square cavity utilizing lattice Boltzmann method. Heat Transfer Asian Research. 2016;45(8):795–814.

    Article  Google Scholar 

  12. Zheng N, Liu P, Shan F, Liu J, Liu Z, Liu W. Numerical studies on thermo-hydraulic characteristics of laminar flow in a heat exchanger tube fitted with vortex rods. Int J Therm Sci. 2016;100:448–56.

    Article  Google Scholar 

  13. Astanina MS, Sheremet MA, Oztop HF, Abu-Hamdeh N. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502.

    Article  Google Scholar 

  14. Mahian O, Oztop HF, Pop I, Mahmud S, Wongwises S. Design of a vertical annulus with MHD flow using entropy generation analysis. Thermal Science. 2013;17(4):1013–22.

    Article  Google Scholar 

  15. Maleki H, Safaei, Alrashed AAA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7277-9.

    Article  Google Scholar 

  16. Khan M, Irfan M, Khan WA, Ahmad L. Modeling and simulation for 3D magneto Eyring-Powell nanomaterial subject to nonlinear thermal radiation and convective heating. Results Phys. 2017;7:1899–906.

    Article  Google Scholar 

  17. Sheikholeslami M, Jafaryar M, Li Z. Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. J Mol Liq. 2018;263:489–500.

    Article  CAS  Google Scholar 

  18. Mahian O, Kianifar A, Sahin AZ, Wongwises S. Heat transfer, pressure drop, and entropy generation in a solar collector using SiO2/water nanofluids: effects of nanoparticle size and pH. J Heat Transfer. 2015;137:061011.

    Article  Google Scholar 

  19. Goodarzi M, Kherbeet ASh, Afrand M, Sadeghinezhad E. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. Int Commun Heat Mass Transfer. 2016;76:16–23.

    Article  CAS  Google Scholar 

  20. Nasiri H, Yaghoub M, Jamalabadi A, Sadeghi R, Safaei MR. Truong Khang Nguyen, Mostafa Safdari Shadloo, A smoothed particle hydrodynamics approach for numerical simulation of nanofluid flows: application to forced convection heat transfer over a horizontal cylinder. J Thermal Analysis Calorimetry, 2018, Accepted for publication.

  21. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.

    Article  CAS  Google Scholar 

  22. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    Article  CAS  Google Scholar 

  23. Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for Alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    Article  CAS  Google Scholar 

  24. Ramzan M, Chung JD, Ullah N. Partial slip effect in the flow of MHD micropolar nanofluid flow due to a rotating disk—a numerical approach. Results Phys. 2017;7:3557–66.

    Article  Google Scholar 

  25. Andrzejczyk R, Muszynski T. An experimental investigation on the effect of new continuous core-baffle geometry on the mixed convection heat transfer in shell and coil heat exchanger. Appl Therm Eng. 2018;136:237–51.

    Article  Google Scholar 

  26. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Investigation of second law and hydrothermal behavior of nanofluid through a tube using passive methods. J Mol Liq. 2018;269:407–16.

    Article  CAS  Google Scholar 

  27. Sheikholeslami M, Li Z, Shafee A. Lorentz forces effect on NEPCM heat transfer during solidification in a porous energy storage system. Int J Heat Mass Transf. 2018;127:665–74.

    Article  CAS  Google Scholar 

  28. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comp Meth Appl Mech Eng. (forthcoming). https://doi.org/10.1016/j.cma.2018.09.044.

    Article  Google Scholar 

  29. Sheikholeslami M. Numerical approach for MHD Al2O3-water nanofluid transportation inside a permeable medium using innovative computer method. Comp Meth Appl Mech Eng. (forthcoming). https://doi.org/10.1016/j.cma.2018.09.042.

    Article  Google Scholar 

  30. Sheikholeslami M. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq. 2018;266:495–503.

    Article  CAS  Google Scholar 

  31. Ali F, Ahmad Sheikh N, Khan I, Saqib M. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: a fractional model. J Magn Magn Mater. 2017;423:327–36.

    Article  CAS  Google Scholar 

  32. Estellé P, Mahian O, Maré T, Öztop HF. Natural convection of CNT water-based nanofluids in a differentially heated square cavity. J Therm Anal Calorim. 2017;128:1765–70.

    Article  Google Scholar 

  33. Khan NS, Gul T, Islam S, Kha A, Shah Z. Brownian motion and thermophoresis effects on MHD mixed convective thin film second-grade nanofluid flow with hall effect and heat transfer past a stretching sheet. J Nanofluids. 2017;6:1–18.

    Article  Google Scholar 

  34. Sheikholeslami M. Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq. 2018;263:472–88.

    Article  CAS  Google Scholar 

  35. Esfe MH, Saedodin S, Mahian O, Wongwises S. Thermal conductivity of Al2O3/water nanofluids. J Therm Anal Calorim. 2016;117(2):675–81.

    Article  Google Scholar 

  36. Sheikholeslami M, Shehzad SA, Li Z. Water based nanofluid free convection heat transfer in a three dimensional porous cavity with hot sphere obstacle in existence of Lorenz forces. Int J Heat Mass Transf. 2018;125:375–86.

    Article  CAS  Google Scholar 

  37. Maskaniyan M, Nazari M, Rashidi S, Mahian O. Natural convection and entropy generation analysis inside a channel with a porous plate mounted as a cooling system. Thermal Sci Eng Progress. 2018;6:186–93.

    Article  Google Scholar 

  38. Sheikholeslami M, Jafaryar M, Li Z. Nanofluid turbulent convective flow in a circular duct with helical turbulators considering CuO nanoparticles. Int J Heat Mass Transf. 2018;124:980–9.

    Article  CAS  Google Scholar 

  39. Fengrui S, Yuedong Y, Xiangfang L. The heat and mass transfer characteristics of superheated steam coupled with non-condensing gases in horizontal wells with multi-point injection technique. Energy. 2018;143:995–1005.

    Article  Google Scholar 

  40. Sheikholeslami M. Investigation of Coulomb forces effects on Ethylene glycol based nanofluid laminar flow in a porous enclosure. Appl Math Mech (English Edition). 2018;39(9):1341–52.

    Article  Google Scholar 

  41. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: A review. Int J Heat Mass Transf. 2017;115:1203–33.

    Article  CAS  Google Scholar 

  42. Akar S, Rashidi S, Abolfazli Esfahani J. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6907-y.

    Article  Google Scholar 

  43. Al-Rashed AAAA, Aich W, Kolsi L, Mahian O, Hussein AK, Borjini MN. Effects of movable-baffle on heat transfer and entropy generation in a cavity saturated by CNT suspensions: three-dimensional modeling. Entropy. 2017;19(5):200.

    Article  Google Scholar 

  44. Koo J, Kleinstreuer C. Viscous dissipation effects in micro tubes and micro channels. Int J Heat Mass Transf. 2004;47:3159–69.

    Article  CAS  Google Scholar 

  45. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moona S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9:119–23.

    Article  Google Scholar 

Download references

Acknowledgements

This article was supported by the National Sciences Foundation of China (NSFC) (No. U1610109), UOW Vice-Chancellor’s Postdoctoral Research Fellowship. Also, the authors acknowledge the funding support of Babol Noshirvani University of Technology through Grant program No. BNUT/390051/97.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M., Jafaryar, M., Shafee, A. et al. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim 134, 2295–2303 (2018). https://doi.org/10.1007/s10973-018-7866-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7866-7

Keywords

Navigation