Skip to main content
Log in

Experimental study and heat transfer analysis of downward flame spread over PMMA under the effect of wall spacing

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

To study the effects of spacing on the downward flame spread over polymethyl methacrylate (PMMA), an experiment was conducted by pure PMMA (with 200 mm height, 50 mm width, and 1 mm thickness) with spacings of 7 mm, 10 mm, 13 mm, 16 mm, 19 mm, 22 mm, and 25 mm to observe the flame height, pyrolysis spread rate of fuels, and heat feedback from the wall. The heat feedback received by PMMA was used to analyze the influencing mechanism of wall spacing on flame spread. The results are as follows: (1) The average flame height decreases with the increase in distances (\(\delta\)). This decrease in average flame height cycles through two stages: a fast drop stage and a slow drop stage. (2) The average pyrolysis spread rate first increases with the increase in distance, and a maximum pyrolysis spread rate occurred in the 13 mm spacing scenario. Then, the average pyrolysis spread rate decreases monotonously when the distance between wall and sample exceeds 13 mm. (3) The heat flux received by the sample consists of both heat flux from the flame and heat feedback from the wall. With the increase in distance, the heat feedback from the wall follows a downward trend, while the heat flux from the flame first increases and then remains constant. Because of the effects of heat flux from flame and heat feedback from the wall, the heat flux received by the sample first increases and then decreases with the increase in distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

\(H_{\text{f}}\) :

Flame height (mm)

\(H_{\text{af}}\) :

Average flame height (m)

\(F\) :

Threshold gray level

\(X_{\text{p}}\) :

Pyrolysis length (m)

\(V_{\text{p}}\) :

Pyrolysis spread rate (m s−1)

\(\dot{q}^{\prime \prime }_{\text{w}}\) :

Heat feedback from the wall (kW m−2)

\(\dot{m}\) :

Mass loss rate (kg s−1)

\(w_{\text{p}}\) :

Width of the pyrolysis (m)

\(p\) :

Environmental pressure (Pa)

\(d\) :

Thickness of PMMA (m)

\(Bi\) :

Biot number

\(h_{\text{t}}\) :

Surface heat transfer coefficient (kW m−2 K−1)

\(k_{\text{t}}\) :

Thermal conductivity (kW m−1 K−1)

\(\dot{q}_{\text{n}}\) :

Heat flux received by sample (kW)

\(\dot{q}_{\text{p}}\) :

Heat flux penetration through pyrolysis surface (kW)

\(\dot{q}_{\text{s}}\) :

Heat flux transferred to the preheated zone (kW)

\(\dot{q}_{\text{cw}}\) :

Convective heat feedback from the wall (kW)

\(\dot{q}_{\text{rw}}\) :

Radiation heat feedback from the wall (kW)

\(x\) :

Preheating zone length (m)

\(\dot{q}^{\prime \prime }_{\text{f}}\) :

Heat flux received by the unit area from flame (kW m−2)

\(h_{\text{deg}}\) :

Heat of degradation (kJ kg−1)

\(C_{\text{p}}\) :

Specific heat of the sample (kJ kg−1 K−1)

\(T_{\text{w}}\) :

Temperature of wall (K)

\(T_{\text{p}}\) :

Pyrolysis temperature of PMMA (K)

\(T_{\text{o}}\) :

Temperature of samples surface (K)

\(h\) :

Convective coefficient (kW m−2 K−1)

\(k\) :

Conductive coefficient of gas phase (kW m−1 K−1)

\(Nu\) :

Nusselt number

\(Gr\) :

Grashof number

\(F_{\text{s}}\) :

Radiant view factor

\(w\) :

Width of the sample (m)

\(\delta\) :

Distance between sample and wall (m)

\(\varepsilon_{1}\) :

Emissivity of the wall

\(\varepsilon_{2}\) :

Emissivity of the PMMA

\(\rho_{\text{f}}\) :

Density of virgin PMMA (kg m−3)

\(\gamma\) :

Thermal diffusivity (m2 s−1)

\(\alpha_{\text{v}}\) :

Coefficient of expansion (K−1)

\(\sigma\) :

Stefan–Boltzmann constant (W m−2 K−4)

References

  1. Zhao K, Zhou X, Liu X, Tang W, Gollner M, Peng F, et al. Experimental and theoretical study on downward flame spread over uninhibited PMMA slabs under different pressure environments. Appl Therm Eng. 2018;136:1–8.

    Article  Google Scholar 

  2. Sarma S, Chakraborty A, Manu NM, Muruganandam TM, Raghavan V, Chakravarthy SR. Spatio-temporal structure of vertically spreading flame over non-planar PMMA surfaces. Proc Combust Inst. 2017;36(2):3027–35.

    Article  CAS  Google Scholar 

  3. Miller CH, Gollner MJ. Upward flame spread over discrete fuels. Fire Saf J. 2015;77:36–45. https://doi.org/10.1016/j.firesaf.2015.07.003.

    Article  CAS  Google Scholar 

  4. Ranga HRR, Korobeinichev OP, Harish A, Raghavan V, Kumar A, Gerasimov IE, et al. Investigation of the structure and spread rate of flames over PMMA slabs. Appl Therm Eng. 2017;130:477–91.

    Article  Google Scholar 

  5. Jiang L, Miller CH, Gollner MJ, Sun JH. Sample width and thickness effects on horizontal flame spread over a thin PMMA surface. Proc Combust Inst. 2017;36(2):2987–94. https://doi.org/10.1016/j.proci.2016.06.157.

    Article  CAS  Google Scholar 

  6. An W, Sun J, Zhu G. Experimental study on temperature field of upward flame spread over discrete polystyrene foam. J Therm Anal Calorim. 2017;131(1):1–10.

    Google Scholar 

  7. Huang X, Liu W, Zhao J, Zhang Y, Sun J. Experimental study of altitude and orientation effects on heat transfer over polystyrene insulation material. J Therm Anal Calorim. 2015;122(1):281–93.

    Article  CAS  Google Scholar 

  8. Lin X, He Y, Jiang W, Liu J, Chen M, Yao W, et al. Prediction of heat release rate of shredded paper tapes based on profile burning surface. J Therm Anal Calorim. 2017;130(3):2215–25.

    Article  CAS  Google Scholar 

  9. Pizzo Y, Consalvi JL, Querre P, Coutin M, Audouin L, Porterie B, et al. Experimental observations on the steady-state burning rate of a vertically oriented PMMA slab. Combust Flame. 2008;152(3):451–60.

    Article  CAS  Google Scholar 

  10. Jiang L, Xiao HH, An WG, Zhou Y, Sun JH. Correlation study between flammability and the width of organic thermal insulation materials for building exterior walls. Energy Build. 2014;82:243–9. https://doi.org/10.1016/j.enbuild.2014.06.013.

    Article  Google Scholar 

  11. Chen X, Liu J, Zhou Z, Li P, Zhou T, Zhou D, et al. Experimental and theoretical analysis on lateral flame spread over inclined PMMA surface. Int J Heat Mass Transf. 2015;91:68–76. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.072.

    Article  CAS  Google Scholar 

  12. Gong JH, Zhou XD, Li J, Yang LZ. Effect of finite dimension on downward flame spread over PMMA slabs: experimental and theoretical study. Int J Heat Mass Transf. 2015;91:225–34. https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.091.

    Article  CAS  Google Scholar 

  13. Zhao K, Zhou XD, Liu XQ, Lu L, Wu ZB, Peng F, et al. Prediction of three-dimensional downward flame spread characteristics over poly(methyl methacrylate) slabs in different pressure environments. Materials. 2016;9(11):15. https://doi.org/10.3390/ma9110948.

    Article  CAS  Google Scholar 

  14. An WG. Investigation of combustion and flame spread behaviors of PS insulation materials applying to building exterior wall. Phd thesis, University of Science and Technology of China; 2015. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2015&filename=1015615215.nh&uid=WEEvREcwSlJHSldRa1FhdkJkVG1COG9aL3hPQUF6SndQV2tiR3FGcVRMRT0=$9A4hF_YAuvQ5obgVAqNKPCYcEj.

  15. An WG, Sun JH, Liew KM, Zhu GQ. Effects of building concave structure on flame spread over extruded polystyrene thermal insulation material. Appl Therm Eng. 2017;121:802–9. https://doi.org/10.1016/j.applthermaleng.2017.04.141.

    Article  CAS  Google Scholar 

  16. An WG, Xiao HH, Liew KM, Jiang L, Yan WG, Zhou Y, et al. Downward flame spread over extruded polystyrene. J Therm Anal Calorim. 2015;119(2):1091–103. https://doi.org/10.1007/s10973-014-4186-4.

    Article  CAS  Google Scholar 

  17. Zhu H, Zhu GQ, Gao YJ, Zhao GX. Experimental studies on the effects of spacing on upward flame spread over thin PMMA. Fire Technol. 2017;53(2):673–93. https://doi.org/10.1007/s10694-016-0590-6.

    Article  Google Scholar 

  18. Comas B, Carmona A, Pujol T. Experimental study of the channel effect on the flame spread over thin solid fuels. Fire Saf J. 2015;71:162–73. https://doi.org/10.1016/j.firesaf.2014.12.001.

    Article  CAS  Google Scholar 

  19. Wasan SR, Van Hees P, Merci B. Study of pyrolysis and upward flame spread on charring materials—part I: experimental study. Fire Mater. 2011;35(4):209–29.

    Article  CAS  Google Scholar 

  20. Wasan SR, Rauwoens P, Vierendeels J, Merci B. Study of vertical upward flame spread on charring materials—part II: numerical simulations. Fire Mater. 2011;35(5):261–73.

    Article  CAS  Google Scholar 

  21. Zhu H. Experimental studies on the effects of spacing on vertical flame spread and dripping behavior over thermally thin PMMA. Phd thesis, China University of Mining and Technology; 2017. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2017&filename=1017950210.nh&uid=WEEvREcwSlJHSldRa1FhdkJkVG1COG9aL3hPQUF6SndQV2tiR3FGcVRMRT0=$9A4hF_YAuvQ5obgVAqNKPCYcEj

  22. Sohn Y, Baek SW, Kashiwagl T. Transient modeling of thermal degradation in non-charring solids. Combust Sci Technol. 1999;145(1–6):83–108.

    Article  CAS  Google Scholar 

  23. An W, Pan R, Meng Q, Zhu H. Experimental study on downward flame spread characteristics under the influence of parallel curtain wall. Appl Therm Eng. 2017;128:297–305.

    Article  Google Scholar 

  24. Chen ZB, Long-Hua HU, Ran H, Shi Z. Flame height characteristics based on image luminance. J Combust Sci Technol. 2008;14(6):557–61.

    CAS  Google Scholar 

  25. Arisawa H, Brill TB. Kinetics and mechanisms of flash pyrolysis of poly(methyl methacrylate) (PMMA). Combust Flame. 1997;109(3):415–26.

    Article  CAS  Google Scholar 

  26. Tseng YT, T’Ien JS. Limiting length, steady spread, and nongrowing flames in concurrent flow over solids. J Heat Transf Trans ASME. 2010;132(9):9. https://doi.org/10.1115/1.4001645.

    Article  CAS  Google Scholar 

  27. Ayani MB, Esfahani JA, Mehrabian R. Downward flame spread over PMMA sheets in quiescent air: experimental and theoretical studies. Fire Saf J. 2006;41(2):164–9. https://doi.org/10.1016/j.firesaf.2005.12.003.

    Article  CAS  Google Scholar 

  28. Gollner MJ, Williams FA, Rangwala AS. Upward flame spread over corrugated cardboard. Combust Flame. 2011;158(7):1404–12. https://doi.org/10.1016/j.combustflame.2010.12.005.

    Article  CAS  Google Scholar 

  29. Ito A, Kashiwagi T. Characterization of flame spread over PMMA using holographic interferometry sample orientation effects ☆. Combust Flame. 1988;71(2):189–204.

    Article  CAS  Google Scholar 

  30. Incropera FP. Fundamentals of heat and mass transfer. New York: Wiley; 1985.

    Google Scholar 

  31. Hurley MJ, Gottuk DT, Hall JR Jr, Harada K, Kuligowski ED, Puchovsky M, et al. SFPE handbook of fire protection engineering. New York: Springer; 2016.

    Book  Google Scholar 

  32. Suzuki M, Dobashi R, Hirano T. Behavior of fires spreading downward over thick paper. Sympos Combus. 1994;25(1):1439–46.

    Article  Google Scholar 

  33. Kumar C, Kumar A. A computational study on opposed flow flame spread over thin solid fuels with side-edge burning. Combust Sci Technol. 2010;182(9):1321–40.

    Article  CAS  Google Scholar 

  34. Huang XJ, Zhao J, Zhang Y, Zhou Y, Wang QS, Sun JH. Effects of altitude and sample orientation on heat transfer for flame spread over polystyrene foams. J Therm Anal Calorim. 2015;121(2):641–50. https://doi.org/10.1007/s10973-015-4615-z.

    Article  CAS  Google Scholar 

  35. Zhao K, Zhou XD, Yang LZ, Gong JH, Wu ZB, Huan ZF, et al. Width effects on downward flame spread over poly(methyl methacrylate) sheets. J Fire Sci. 2015;33(1):69–84. https://doi.org/10.1177/0734904114554559.

    Article  CAS  Google Scholar 

  36. Chen Y, Gong J, Wang X, Zhu S, Zhou Y, Jiang J, et al. Effect of radiation absorption modes on ignition time of translucent polymers subjected to time-dependent heat flux. J Therm Anal Calorim. 2018;1:1–13.

    Google Scholar 

  37. Ahmed L, Zhang B, Shen R, Agnew RJ, Park H, Cheng Z, et al. Fire reaction properties of polystyrene-based nanocomposites using nanosilica and nanoclay as additives in cone calorimeter test. J Therm Anal Calorim. 2018;132(B):1–13.

    Google Scholar 

  38. Jiang L, Xiao HH, Zhou Y, An WG, Yan WG, He JJ, et al. Theoretical and experimental study of width effects on horizontal flame spread over extruded and expanded polystyrene foam surfaces. J Fire Sci. 2014;32(3):193–209. https://doi.org/10.1177/0734904113505677.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Foundation of Jiangsu Province (No. BK20160270), the National Key Research and Development Program of China (No. 2016YFC0802900), the National Natural Science Foundation of China (No. 51606215), and the Sichuan Science and Technology Project (No. 2018JY0429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqing Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, R., Zhu, G., Zhang, G. et al. Experimental study and heat transfer analysis of downward flame spread over PMMA under the effect of wall spacing. J Therm Anal Calorim 138, 1711–1722 (2019). https://doi.org/10.1007/s10973-019-08119-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08119-6

Keywords

Navigation