Skip to main content
Log in

Effects of aggregation kinetics on nanoscale colloidal solution inside a rotating channel

A thermal framework

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of the present investigation is to reveal the effects of aggregation kinetics on the nanofluid flow between two revolving plates. Additionally, we have presumed that the upper surface of the revolving structure is permeable while the lower one is blessed to move with variable speed. Here we have introduced Nimonic 80A alloy nanoparticles with water as a base liquid. Aggregation kinetics at molecular level has been introduced mathematically to model our work and to explore how aggregation features affect the thermal integrity of the system. Similarity technique guided us to avail non-dimensional form of leading equations. RK-4 method along with shooting technique aids us to solve nonlinear ODEs. Several features of aggregation parameters on velocity and temperature profile have been explored through graphs and tables. Results extract that effective thermal conductivity of aggregated composite increases for nanoparticle volume fraction. Heat transport drops off for radius of gyration factor at lower segment but rises at upper regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\({\varvec{\Omega}}\) :

Angular velocity

\(\left( {u,v,w} \right)\) :

Velocity along \(x,y,z\,{\text{axis}}\)

\(U_{\text{w}}\) :

Stretching velocity

\(T_{0}\) :

Temperature of the upper surface

\(T_{\text{h}}\) :

Temperature of the lower surface

\(T\) :

Nanofluid temperature

\(\rho\) :

Density

\(\mu\) :

Dynamic viscosity

\(\kappa\) :

Thermal conductivity

\(\left( {C_{\text{p}} } \right)\) :

Heat capacitance

\(v_{\text{w}}\) :

Suction/injection parameter

\(\alpha_{\text{nf}} = \frac{{\kappa_{\text{nf}} }}{{\left( {\rho C_{\text{p}} } \right)_{\text{nf}} }}\) :

Nanofluid thermal diffusivity

\(\phi\) :

Nanoparticle volume fraction

\(\phi_{\text{int}}\) :

Nanoparticle volume fraction within aggregate

\(A_{\text{k}}\) :

Kapitza radius

\(p\) :

Aspect ratio

\(R\) :

Average radius of gyration

\(d_{\text{f}}\) :

Fractal dimension

\(d_{\text{l}}\) :

Chemical dimension

\(N\) :

Number of particles

\(a\) :

Radius of primary particles

\(\delta = \frac{{bh^{2} }}{{\nu_{\text{f}} }}\) :

Reynolds number

\(Pr = \frac{{\mu_{\text{f}} \left( {\rho C_{p} } \right)_{\text{f}} }}{{\rho_{\text{f}} \kappa_{\text{f}} }}\) :

Prandtl number

\(S = \frac{{v_{\text{w}} }}{bh}\) :

Suction/injection parameter

\(\lambda = \frac{{\varOmega h^{2} }}{{\nu_{\text{f}} }}\) :

Rotation parameter

\(Nu\) :

Nusselt number

\(C_{\text{f}}\) :

Skin friction

\(Nu_{\text{r}}\) :

Reduced Nusselt number

\(C_{\text{fr}}\) :

Reduced skin friction

\({Re}_{\text{x}} = \frac{{U_{\text{w}} x}}{{\nu_{\text{f}} }}\) :

Local Reynold’s number

a:

Aggregate

c:

Backbone

nc:

Dead end

f:

Fluid

nf:

Nanofluid

s:

Nanoparticle

max:

Maximum

eff:

Effective

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. Dev Appl Non-Newton Flows. 1995;66:99–105.

    Google Scholar 

  2. Eastman JA, Choi US, Li S, Thompson LJ, Lee S. Enhanced thermal conductivity through the development of nanofluids. In: Komarneni S, Parker JC, Wollenberger HJ, editors. Nanophase and nanocomposite materials II. Pittsburg: MRS; 1997. p. 3–11.

    Google Scholar 

  3. Bozorgan N, Shafahi M. Performance evaluation of nanofluids in solar energy: a review of the recent literature. Micro Nano Syst Lett. 2015;3:5. https://doi.org/10.1186/s40486-015-0014-2.

    Article  Google Scholar 

  4. Yang L, Hu Y. Toward TiO2 nanofluids—Part 2: applications and challenges. Nanoscale Res Lett. 2017;12:446.

    Article  Google Scholar 

  5. Li MZ, Jia LC, Zhang XP, Yan DX, Zhang QC, Li Z. M, Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. J Colloid Interface Sci. 2018;530(15):113–9.

    Article  CAS  Google Scholar 

  6. Medrano JJA, Aragon FFH, Felix LL, Coaquira JAH, Rodriguez AFR, Faria FSEDV, Sousa MH, Ochoa JCM, Morais PC. Evidence of particle–particle interaction quenching in nanocomposite based on oleic acid-coated Fe3O4 nanoparticles after over-coating with essential oil extracted from Croton cajucara Benth. JMagn Magn Mater. 2018;466(15):359–67.

    Article  CAS  Google Scholar 

  7. Manimaran R, Palaniradja K, Alagumurthi N, Sendhilnathan S, Hussain J. Preparation and characterization of copper oxide nanofluid for heat transfer applications. Appl Nanosci. 2014;4(2):163–7.

    Article  CAS  Google Scholar 

  8. Acharya N, Das K, Kundu PK. Framing the effects of solar radiation on magneto-hydrodynamics bioconvection nanofluid flow in presence of gyrotactic microorganisms. J Mol Liq. 2016;222:28–37.

    Article  CAS  Google Scholar 

  9. Akbar NS, Beg OA, Khan ZH. Magneto-nanofluid flow with heat transfer past a stretching surface for the new heat flux model using numerical approach. Int J Numer Meth Heat Fluid Flow. 2017;27(6):1215–30.

    Article  Google Scholar 

  10. Ismael MA, Mansour MA, Chamkha AJ, Rashad A. M, Mixed convection in a nanofluid filled-cavity with partial slip subjected to constant heat flux and inclined magnetic field. J Magn Magn Mater. 2016;416:25–36.

    Article  CAS  Google Scholar 

  11. Ghadikolaei SS, Hosseinzadeh Kh, Ganji D. D, MHD raviative boundary layer analysis of micropolar dusty fluid with graphene oxide (Go)- engine oil nanoparticles in a porous medium over a stretching sheet with joule heating effect. Powder Technol. 2018;338:425–37.

    Article  CAS  Google Scholar 

  12. Mahian O, Kolsi L, Amani M, et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  Google Scholar 

  13. Mahian O, Kolsi L, Amani M, et al. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018;10:12. https://doi.org/10.1016/j.physrep.2018.11.003.

    Article  CAS  Google Scholar 

  14. Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S. An experimental investigation on the effect of Al2O3–H2O nanofluid on the efficiency of flat plate solar collector. Renew Energy. 2012;39(1):293–8.

    Article  CAS  Google Scholar 

  15. Gangadevi R, Vinayagam BK. Experimental determination of thermal conductivity and viscosity of different nanofluids and its effect on a hybrid solar collector. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7840-4.

    Article  Google Scholar 

  16. Annapureddy HVR, Nune SK, Motkuri RK, McGrail BP, Dang LX. A combined experimental and computational study on the stability of nanofluids containing metal organic frameworks. J Phys Chem B. 2015;119(29):8992–9.

    Article  CAS  Google Scholar 

  17. Wang Y, Deng KH, Liu B, Wu JM, Su GH. Experimental study on AIN/H2O and Al2O3/H2O nanofluid flow boiling heat transfer and its influence factors in a vertical tube. In: ASME Proceedings thermal-hydraulics, Paper No. ICONE24-60496. https://doi.org/10.1115/icone24-60496.

  18. Bowers J, Cao H, Qiao G, Li Q, Zhang G, Mura E, Ding Y. Flow and heat transfer behaviour of nanofluids in microchannels. Prog Nat Sci: Mater Int. 2018;28(2):225–34.

    Article  CAS  Google Scholar 

  19. Peyravi A, Keshavarz P, Mowla D. Experimental investigation on the absorption enhancement of CO2 by various nanofluids in hollow fiber membrane contactors. Energy Fuels. 2015;29(12):8135–42.

    Article  CAS  Google Scholar 

  20. Adelekan DS, Ohunakin OS, Gill J, Atayero AA, Diarra CD, Asuzu EA. Experimental performance of a safe charge of LPG refrigerant enhanced with varying concentrations of TiO2 nano-lubricants in a domestic refrigerator. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7879-2.

    Article  Google Scholar 

  21. Teng TP, Hung YH, Teng TC, Chen JH. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow. Nanoscale Res Lett. 2011;6:488. https://doi.org/10.1186/1556-276X-6-488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Moghaddaszadeh N, Esfahani JA, Mahian O. Performance enhancement of heat exchangers using eccentric tape inserts and nanofluids. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08009-x.

    Article  Google Scholar 

  23. Freidoonimehr N, Rostami B, Rashidi MM, Momoniat E. Analytical modelling of three-dimensional squeezing nanofluid flow in a rotating channel on a lower stretching porous wall. Math Probl Eng. 2014;692–728.

  24. Mohyud-Din ST, Zaidi ZA, Khan U, Ahmed N. On heat and mass transfer analysis for the flow of a nanofluid between rotating parallel plates. Aerosp Sci Technol. 2015;46:514–22.

    Article  Google Scholar 

  25. Sheikholeslami M, Hatami M, Ganji DD. Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field. J Mol Liq. 2014;190:112–20.

    Article  CAS  Google Scholar 

  26. Mabood F, Khan WA, Makinde OD. Hydromagnetic flow of a variable viscosity nanofluid in a rotating permeable channel with hall effects. J Eng Thermophys. 2017;26:553–66.

    Article  CAS  Google Scholar 

  27. Hayat T, Qayyum S, Imtiaz M, Alzahrani F, Alsaedi A. Partial slip effect in flow of magnetite Fe3O4 nanoparticles between rotating stretchable disks. J Magn Magn Mater. 2016;413:39–48.

    Article  CAS  Google Scholar 

  28. Mustafa M. MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model. Int J Heat Mass Transf. 2017;108:1910–6.

    Article  Google Scholar 

  29. Acharya N, Das K, Kundu PK. Fabrication of active and passive controls of nanoparticles of unsteady nanofluid flow from a spinning body using HPM. Eur Phys J Plus. 2017;132:323.

    Article  Google Scholar 

  30. Acharya N, Das K, Kundu PK. Rotating flow of carbon nanotube over a stretching surface in the presence of magnetic field: a comparative study. Appl Nanosci. 2018. https://doi.org/10.1007/s13204-018-0794-9.

    Article  Google Scholar 

  31. Hogan CCM. Density of states of an insulating ferromagnetic alloy. Phys Rev. 1969;188:870.

    Article  CAS  Google Scholar 

  32. Parayanthal P, Pollak F. Raman scattering in alloy semiconductors:” spatial correlation” model. Phys Rev Lett. 1984;52:1822–5.

    Article  CAS  Google Scholar 

  33. Smith RJ, Lewi GJ, Yates DH. Development and application of nickel alloys in aerospace engineering. Aircr Eng Aerosp Technol. 2001;73(2):138–47. https://doi.org/10.1108/00022660110694995.

    Article  Google Scholar 

  34. Heckman GR, Herbenar AW. Operating experience of Nimonic 80A first stage buckets in natural gas burning turbines. In: ASME proceedings gas turbine power, Paper No. 60-GTP-8. 1960. https://doi.org/10.1115/60-gtp-8.

  35. Kargarnejad S, Djavanroodi F. Failure assessment of Nimonic 80A gas turbine blade. Eng Fail Anal. 2012;26:211–9.

    Article  CAS  Google Scholar 

  36. Kim DK, Kim DY, Ryu SH, Kim DJ. Application of nimonic 80A to the hot forging of an exhaust valve head. J Mater Process Technol. 2001;113(1):148–52. https://doi.org/10.1016/S0924-0136(01)00700-2.

    Article  CAS  Google Scholar 

  37. Yerrennagoudaru H, Manjunatha K. Design and development of a new pistonusing Nimonic alloy 80A for low cetane fuels usage in CI engines. Mater Today Proc. 2017;4(8):9284–93.

    Article  Google Scholar 

  38. Jeong HS, Cho JR, Lee NK, Park HC. Simulation of electric upsetting and forging process for large marine diesel engine exhaust valves. Mater Sci Forum. 2006;510–511(2006):142–5. https://doi.org/10.4028/www.scientific.net/MSF.510-511.142.

    Article  Google Scholar 

  39. Raju CSK, Hoque MM, Anika NN, Mamatha SU, Sharma P. Natural convective heat transfer analysis of MHD unsteady carreau nanofluid over a cone packed with alloy nanoparticles. Powder Technol. 2017;10:12. https://doi.org/10.1016/j.powtec.2017.05.003.

    Article  CAS  Google Scholar 

  40. Makinde OD, Mahanthesh B, Gireesha BJ, Shashikumar NS, Monaledi RL, Tshehla MS. MHD nanofluid flow past a rotating disk with thermal radiation in the presence of aluminum and titanium alloy nanoparticles. Defect Diffusion Forum. 2018;384:69–79.

    Article  Google Scholar 

  41. Sandeep N, Sugunamma V, Krishna PM. Effects of radiation on an unsteady natural convective flow of a EG-Nimonic 80a nanofluid past an infinite vertical plate. Adv Phys Theor Appl. 2013;23:36–43.

    Google Scholar 

  42. Sandeep N, Sulochana C, Sugunamma V. Heat transfer characteristics of a dusty nanofluid past a permeable stretching/shrinking cylinder with non-uniform heat source/sink. J Nanofluids. 2016;5:59–67.

    Article  Google Scholar 

  43. Ellahi R, Hassan M, Zeeshan A, Khan AA. The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection. Appl Nanosci. 2016;6:641–51.

    Article  CAS  Google Scholar 

  44. Keblinski P, Phillpot SR, Choi SUS, et al. Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf. 2002;45:855–63.

    Article  CAS  Google Scholar 

  45. Wang BX, Zhou LP, Peng XF. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf. 2003;46:2665–72.

    Article  CAS  Google Scholar 

  46. Prasher R, Phelan PE, Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Lett. 2006;6:1529–34.

    Article  CAS  Google Scholar 

  47. Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int. J. Heat Mass Transf. 2008;51:1431–8.

    Article  CAS  Google Scholar 

  48. Sui J, Zhao P, Mohsin BB, Zheng L, Zhang X, Cheng Z, Chen Y, Chen G. Fractal aggregation kinetics contributions to thermal conductivity of nano-suspensions in unsteady thermal convection. Sci Rep. https://doi.org/10.1038/srep39446.

  49. Gambinossi F, Mylon SE, Ferri JK. Aggregation kinetics and colloidal stability of functionalized nanoparticles. Adv Colloid Interface Sci. https://doi.org/10.1016/j.cis.2014.07.015.

    Article  CAS  Google Scholar 

  50. Cai J, Hu X, Xiao B, Zhou Y, Wei W. Recent developments on fractal-based approaches to nanofluids and nanoparticle aggregation. Int J Heat Mass Transf. 2017;105:623–37.

    Article  CAS  Google Scholar 

  51. Afrooz ARMN, Hussain SM, Saleh NB. Aggregate size and structure determination of nanomaterials in physiological media: importance of dynamic evolution. J Nanopart Res. 2014;16:1–7.

    Article  CAS  Google Scholar 

  52. Prasher RS, Bhattacharya P, Phelan PE. Brownian motion based convective conductive model for the effective thermal conductivity of nanofluids. J Heat Transf. 2006;128:588–95.

    Article  CAS  Google Scholar 

  53. Jang SP, Choi SUS. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett. 2004;84:4316–8.

    Article  CAS  Google Scholar 

  54. Keblinski P, Eastman JA, Cahill DG. Review feature nanofluid for thermal transport. Mater Today. 2005;8:36–44.

    Article  CAS  Google Scholar 

  55. Hunter RJ. Foundations of colloid science. New York: Oxford University Press; 2001.

    Google Scholar 

  56. Zhu H, Zhang C, Liu S, Tang Y, Yin Y. Appl Phys Lett. 2006;89:023123.

    Article  Google Scholar 

  57. Ce-Wen Nan R, Birringer R, Clarke DR, Gleiter H. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997;81(10):6692–9.

    Article  Google Scholar 

  58. Venerus DC, Kabadi MS, Lee S, Perez-Luna V. Study of thermal transport in nanoparticle suspensions using forced Rayleigh scattering. J Appl Phys. 2006;100:094310–1–094310-2.

    Article  Google Scholar 

  59. Shih W-H, Shih WY, Kim S-I, Liu J, Aksay IA. Scaling behavior of the elastic properties of colloidal gels. Phys Rev A. 1990;42:4772–9.

    Article  CAS  Google Scholar 

  60. Prasher RS. Thermal interface materials: historical perspective, status, and future directions. Proc IEEE. 2006;94(8):1571–86.

    Article  CAS  Google Scholar 

  61. Putnam SA, Cahill DG, Ash BJ, Schadler LS. High-precision thermal conductivity measurements as a probe of polymer/nanoparticles interfaces. J Appl Phys. 2003;94(10):6785–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilankush Acharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, N., Das, K. & Kundu, P.K. Effects of aggregation kinetics on nanoscale colloidal solution inside a rotating channel. J Therm Anal Calorim 138, 461–477 (2019). https://doi.org/10.1007/s10973-019-08126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08126-7

Keywords

Mathematics Subject Classification

Navigation