Skip to main content
Log in

Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, heat transfer though a porous fin with rectangular cross section is investigated. The Darcy model is utilized to simulate heat transfer in this porous media. It is assumed that the fin is one-dimensional, homogenous, the flow is laminar, and the generated heat is a linear function of temperature. In this research, three different analytical methods are used to obtain the temperature distribution after deriving the heat transfer equation. In order to validate the obtained solution the collocation method (CM) is compared with the results by a numerical method, in order to validate the solutions, homotopy perturbation method (HPM) and homotopy analysis method (HAM) are employed. This problem is solved for the general case, and the output is obtained as a relationship for one iteration. The effects of various parameters including convection (Nc), porosity (Sh), Rayleigh number (Ra) are examined in this research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ra:

Rayleigh number

Sh:

Porosity parameter

Nc:

Convection parameter

Kr :

Ratio of conduction heat transfer

Nr:

Radiation parameter

G :

Dimensionless number of generated heat

ε :

Parameter of internal heat generation

θ :

Parameter of surface temperature

Q :

Heat transfer rate

α :

Thickness ratio

Bi :

Biot number

Θ :

Dimensionless temperature of convection medium

θs:

Dimensionless temperature of sink for radiation

H :

Homotopy method

References

  1. Sheikholeslami M, Sajjadi H, Amiri Delouei A, et al. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7866-7.

    Article  Google Scholar 

  2. Keshavarz F, Mirabdolah Lavasani A, Bayat H. Numerical analysis of effect of nanofluid and fin distribution density on thermal and hydraulic performance of a heat sink with drop-shaped micropin fins. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7093-2.

    Article  Google Scholar 

  3. Sheikholeslami M, Jafaryar M, Shafee A, et al. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7866-7.

    Article  Google Scholar 

  4. Szilágyi IM, et al. WO3photocatalysts: influence of structure and composition. J Catal. 2012;294:119–27.

    Article  Google Scholar 

  5. Szilágyi IM, et al. Stability and controlled composition of hexagonal WO3. Chem Mater. 2008;20:4116–25.

    Article  Google Scholar 

  6. Szilagyi IM, et al. Gas sensing selectivity of hexagonal and monoclinic WO3 to H2S. Solid State Sci. 2010;12:1857–60.

    Article  CAS  Google Scholar 

  7. Szilágyi IM, et al. Programming nanostructured soft biological surfaces by atomic layer deposition. Nanotechnology. 2013;24:24.

    Article  Google Scholar 

  8. Lublóy É, Kopecskó K, Balázs GL, Restás Á, Szilágyi IM. Improved fire resistance by using Portland-pozzolana or Portland-fly ash cements. J Therm Anal Calorim. 2017;129:925–36.

    Article  Google Scholar 

  9. Bakos LP, Mensah J, László K, Igricz T, Szilágyi IM. Preparation and characterization of a nitrogen-doped mesoporous carbon aerogel and its polymer precursor. J Thermal Anal Calorim. 2018;134:933–9.

    Article  CAS  Google Scholar 

  10. Szilágyi IM, Santala E, Heikkilä M, et al. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Thermal Anal Calorim. 2010;105:73.

    Article  Google Scholar 

  11. Lublóy É, Kopecskó K, Balázs GL, Szilágyi IM, Madarász J. Improved fire resistance by using slag cements. J Therm Anal Calorim. 2016;125:271–9.

    Article  Google Scholar 

  12. Jouybari HJ, Saedodin S, Zamzamian A, Nimvari ME, Wongwises S. Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renewable Energy. 2017;114:1407–18.

    Article  CAS  Google Scholar 

  13. Javaniyan Jouybari H, Saedodin S, Zamzamian A, Nimvari ME. Experimental investigation of thermal performance and entropy generation of a flat-plate solar collector filled with porous media. Appl Thermal Eng. 2017;127:1506–17.

    Article  Google Scholar 

  14. Mahdavi M, Sharifpur M, Meyer JP. Implementation of diffusion and electrostatic forces to produce a new slip velocity in the multiphase approach to nanofluids. Powder Technol. 2017;307:153–62. https://doi.org/10.1016/j.powtec.2016.11.032.

    Article  CAS  Google Scholar 

  15. Mahdavi M, Sharifpur M, Meyer JP. CFD modelling of heat transfer and pressure drops for nanofluids through vertical tubes in laminar flow by Lagrangian and Eulerian approaches. Int J Heat Mass Transf. 2015;88:803–13. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.112.

    Article  CAS  Google Scholar 

  16. Mahdavi M, Garbadeen I, Sharifpur M, Ahmadi MH, Meyer JP. Study of particle migration and deposition in mixed convective pipe flow of nanofluids at different inclination angles. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7720-y.

    Article  Google Scholar 

  17. Ghasemi A, Dardel M, Ghasemi MH. Collective effect of fluid’s coriolis force and nanoscale’s parameter on instability pattern and vibration characteristic of fluid-conveying carbon nanotubes. J Pressure Vessel Technol. 2015;137:031301.

    Article  Google Scholar 

  18. Mahdavi M, Sharifpur M, Ghodsinezhad H, Meyer JP. A new combination of nanoparticles mass diffusion flux and slip mechanism approaches with electrostatic forces in a natural convective cavity flow. Int J Heat Mass Transf. 2017;106:980–8. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.065.

    Article  CAS  Google Scholar 

  19. Ghasemi A, Dardel M, Ghasemi MH, Barzegari MM. Analytical analysis of buckling and post-buckling of fluid conveying multi-walled carbon nanotubes. Appl Math Model. 2013;37:4972–92.

    Article  Google Scholar 

  20. Wu C, et al. Multi-scale progressive failure mechanism and mechanical properties of nanofibrous polyurea aerogels. Soft Matter. 2018;14:7801–8.

    Article  CAS  Google Scholar 

  21. Hoseinzadeh S, Ghasemiasl R, Bahari A, Ramezani AH. n-type WO3semiconductor as a cathode electrochromic material for ECD devices. J Mater Sci: Mater Electron. 2017;28:14446–52.

    CAS  Google Scholar 

  22. Hoseinzadeh S, Ghasemiasl R, Bahari A, Ramezani AH. The injection of Ag nanoparticles on surface of WO3 thin film: enhanced electrochromic coloration efficiency and switching response. J Mater Sci: Mater Electron. 2017;28:14855–63.

    CAS  Google Scholar 

  23. Ramezani AH, Hoseinzadeh S, Bahari A. The effects of nitrogen on structure, morphology and electrical resistance of tantalum by ion implantation method. J Inorg Organomet Polym Mater. 2018;28:847–53.

    Article  CAS  Google Scholar 

  24. Yousef Nezhad ME, Hoseinzadeh S. Mathematical modelling and simulation of a solar water heater for an aviculture unit using MATLAB/SIMULINK. J Renew Sustain Energy. 2017;9:063702.

    Article  Google Scholar 

  25. Hoseinzadeh S, Hadi Zakeri M, Shirkhani A, Chamkha AJ. Analysis of energy consumption improvements of a zero-energy building in a humid mountainous area. J Renew Sustain Energy. 2019;11:015103.

    Article  Google Scholar 

  26. Hoseinzadeh S, Azadi R. Simulation and optimization of a solar-assisted heating and cooling system for a house in Northern of Iran. J Renew Sustain Energy. 2017;9:045101.

    Article  Google Scholar 

  27. Hoseinzadeh S, Ghasemiasl R, Bahari A, Ramezani AH. Effect of post-annealing on the electrochromic properties of layer-by-layer arrangement FTO-WO3-Ag-WO3-Ag. J Electron Mater. 2018;47:3552–9.

    Article  CAS  Google Scholar 

  28. Chamkha AJ. Hydromagnetic natural convection from an isothermal inclined surface adjacent to a thermally stratified porous medium. Int J Eng Sci. 1997;35:975–86.

    Article  CAS  Google Scholar 

  29. Menni Y, Azzi A, Chamkha A. Enhancement of convective heat transfer in smooth air channels with wall-mounted obstacles in the flow path: a review. J Thermal Anal Calorim. 2018; 1–26.

  30. Selimefendigil F, Oztop HF, Chamkha AJ. MHD mixed convection in a nanofluid filled vertical lid-driven cavity having a flexible fin attached to its upper wall. J Thermal Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7036-y.

    Article  Google Scholar 

  31. Selimefendigil F, Oztop HF, Chamkha AJ. Natural convection in a CuO–water nanofluid filled cavity under the effect of an inclined magnetic field and phase change material (PCM) attached to its vertical wall. J Thermal Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7714-9.

    Article  Google Scholar 

  32. Abedini A, Armaghani T, Chamkha AJ. MHD free convection heat transfer of a water–Fe3O4 nanofluid in a baffled C-shaped enclosure. J Therm Anal Calorim. 2019;135:685–95.

    Article  CAS  Google Scholar 

  33. Dogonchi AS, Chamkha AJ, Ganji DD. A numerical investigation of magneto-hydrodynamic natural convection of Cu–water nanofluid in a wavy cavity using CVFEM. J Therm Anal Calorim. 2019;135:2599–611.

    Article  CAS  Google Scholar 

  34. Chamkha AJ, Rashad AM, Armaghani T, Mansour MA. Effects of partial slip on entropy generation and MHD combined convection in a lid-driven porous enclosure saturated with a Cu–water nanofluid. J Therm Anal Calorim. 2018;132:1291–306.

    Article  CAS  Google Scholar 

  35. Alsabery AI, Chamkha AJ, Saleh H, Hashim I. Natural convection flow of a nanofluid in an inclined square enclosure partially filled with a porous medium. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-02241-x.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sheikholeslami M, Ganji DD. Applications of nanofluid for heat transfer enhancement. New York: Elsevier; 2017.

    Google Scholar 

  37. Sheikholeslami M, Gorji-Bandpy M, Ganji DD. Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid. Powder Technol. 2014;254:82–93.

    Article  CAS  Google Scholar 

  38. Sheikholeslami M, Ganji DD. Nanofluid hydrothermal behavior in existence of Lorentz forces considering Joule heating effect. J Mol Liq. 2016;224:526–37.

    Article  CAS  Google Scholar 

  39. Sheikholeslami M, Ganji DD, Rashidi MM. Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J Magn Magn Mater. 2016;416:164–73.

    Article  CAS  Google Scholar 

  40. Sheikholeslami M, Ganji DD. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM. Comput Methods Appl Mech Eng. 2015;283:651–63.

    Article  Google Scholar 

  41. Sheikholeslami M, Ganji DD. Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol. 2013;235:873–9.

    Article  CAS  Google Scholar 

  42. Sheikholeslami M, Ganji DD. Analytical investigation for Lorentz forces effect on nanofluid Marangoni boundary layer hydrothermal behavior using HAM. Indian J Phys. 2017;91:1581–7.

    Article  CAS  Google Scholar 

  43. Sheikholeslami M, Ashorynejad HR, Ganji DD, Yldrm A. Homotopy perturbation method for three-dimensional problem of condensation film on inclined rotating disk. Scientia Iranica. 2012;19:437–42.

    Article  Google Scholar 

  44. Sheikholeslami M, Ganji DD, Ashorynejad HR. Investigation of squeezing unsteady nanofluid flow using ADM. Powder Technol. 2013;239:259–65.

    Article  CAS  Google Scholar 

  45. Sheikholeslami M, Ganji DD. Magnetohydrodynamic flow in a permeable channel filled with nanofluid. Scientia Iranica. 2014;21:203–12.

    Google Scholar 

  46. Sheikholeslami M, Ganji DD. Transportation of MHD nanofluid free convection in a porous semi annulus using numerical approach. Chem Phys Lett. 2017;669:202–10.

    Article  CAS  Google Scholar 

  47. Sheikholeslami M, Ashorynejad HR, Ganji D, Rashidi M. Heat and mass transfer of a micropolar fluid in a porous channel. Commun Numer Anal. 2014;2014:1–20.

    Article  Google Scholar 

  48. Sheikholeslami M, Ziabakhsh Z, Ganji DD. Transport of magnetohydrodynamic nanofluid in a porous media. Colloids Surf, A. 2017;520:201–12.

    Article  CAS  Google Scholar 

  49. Sheikholeslami M, Haq RU, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transfer. 2019;130:1322–42.

    Article  CAS  Google Scholar 

  50. Sheikholeslami M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng. 2019;344:319–33.

    Article  Google Scholar 

  51. Sheikholeslami M. Numerical approach for MHD Al[Formula presented]O[Formula presented]-water nanofluid transportation inside a permeable medium using innovative computer method. Comput Methods Appl Mech Eng. 2019;344:306–18.

    Article  Google Scholar 

  52. Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z. Application of Neural Network for estimation of heat transfer treatment of Al[Formula presented]O[Formula presented]-H[Formula presented]O nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344:1–12.

    Article  Google Scholar 

  53. Sheikholeslami M, Mahian O. Enhancement of PCM solidification using inorganic nanoparticles and an external magnetic field with application in energy storage systems. J Clean Prod. 2019;215:963–77.

    Article  CAS  Google Scholar 

  54. Nematpour Keshteli A, Sheikholeslami M. Nanoparticle enhanced PCM applications for intensification of thermal performance in building: a review. J Mol Liq. 2019;274:516–33.

    Article  CAS  Google Scholar 

  55. Sheikholeslami M, Sadoughi MK. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    Article  CAS  Google Scholar 

  56. Sheikholeslami M, Rokni HB. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput Methods Appl Mech Eng. 2017;317:419–30.

    Article  Google Scholar 

  57. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    Article  CAS  Google Scholar 

  58. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    Article  CAS  Google Scholar 

  59. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    Article  CAS  Google Scholar 

  60. Sheikholeslami M, Zeeshan A. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.

    Article  Google Scholar 

  61. Sheikholeslami M, Shehzad SA. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200–12.

    Article  CAS  Google Scholar 

  62. Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convective flow in a porous enclosure by means of LBM. Int J Heat Mass Transf. 2017;113:796–805.

    Article  CAS  Google Scholar 

  63. Sheikholeslami M, Shamlooei M. Fe3O4–H2O nanofluid natural convection in presence of thermal radiation. Int J Hydrogen Energy. 2017;42:5708–18.

    Article  CAS  Google Scholar 

  64. Sheikholeslami M. Application of Darcy law for nanofluid flow in a porous cavity under the impact of Lorentz forces. J Mol Liq. 2018;266:495–503.

    Article  CAS  Google Scholar 

  65. Sheikholeslami M, Jafaryar M, Li Z. Second law analysis for nanofluid turbulent flow inside a circular duct in presence of twisted tape turbulators. J Mol Liq. 2018;263:489–500.

    Article  CAS  Google Scholar 

  66. Sheikholeslami M. Influence of magnetic field on Al2O3-H2O nanofluid forced convection heat transfer in a porous lid driven cavity with hot sphere obstacle by means of LBM. J Mol Liq. 2018;263:472–88.

    Article  CAS  Google Scholar 

  67. Sheikholeslami M. Solidification of NEPCM under the effect of magnetic field in a porous thermal energy storage enclosure using CuO nanoparticles. J Mol Liq. 2018;263:303–15.

    Article  CAS  Google Scholar 

  68. Sheikholeslami M, Shehzad SA, Li Z, Shafee A. Numerical modeling for alumina nanofluid magnetohydrodynamic convective heat transfer in a permeable medium using Darcy law. Int J Heat Mass Transf. 2018;127:614–22.

    Article  CAS  Google Scholar 

  69. Sheikholeslami M, Zeeshan A. Analysis of flow and heat transfer in water based nanofluid due to magnetic field in a porous enclosure with constant heat flux using CVFEM. Comput Methods Appl Mech Eng. 2017;320:68–81.

    Article  Google Scholar 

  70. Li Z, Sheikholeslami M, Shafee A, Saleem S, Chamkha AJ. Effect of dispersing nanoparticles on solidification process in existence of Lorenz forces in a permeable media. J Mol Liq. 2018;266:181–93.

    Article  CAS  Google Scholar 

  71. Sheikholeslami M. CuO-water nanofluid free convection in a porous cavity considering Darcy law. Eur Phys J Plus. 2017. https://doi.org/10.1140/epjp/i2017-11330-3.

    Article  Google Scholar 

  72. Sheikholeslami M, Rokni HB. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Fluids. 2018;30:012003.

    Article  Google Scholar 

  73. Sheikholeslami M, Chamkha AJ. Influence of Lorentz forces on nanofluid forced convection considering Marangoni convection. J Mol Liq. 2017;225:750–7.

    Article  CAS  Google Scholar 

  74. Sheikholeslami M, Hayat T, Alsaedi A. Numerical simulation of nanofluid forced convection heat transfer improvement in existence of magnetic field using lattice Boltzmann method. Int J Heat Mass Transf. 2017;108:1870–83.

    Article  CAS  Google Scholar 

  75. Hosseinzadeh S, Ostadhossein R, Mirshahvalad HR, Seraj J. Using simpler algorithm for cavity flow problem. Int J (MECHATROJ). 2017;1(1).

  76. Hoseinzadeh S, Ghasemiasl R, Havaei D, Chamkha AJ. Numerical investigation of rectangular thermal energy storage units with multiple phase change materials. J Mol Liq. 2018;271:655–60.

    Article  CAS  Google Scholar 

  77. Hoseinzadeh S, Moafi A, Shirkhani A, Chamkha AJ. Numerical validation heat transfer of rectangular cross-section porous fins. J Thermophys Heat Transfer. 2019; 1–7.

  78. Yari A, Hosseinzadeh S, Galogahi MR. Two-dimensional numerical simulation of the combined heat transfer in channel flow. Int J Recent Adv Mech Eng. 2014;3:55–67.

    Article  Google Scholar 

  79. Hoseinzadeh S, Sahebi SAR, Ghasemiasl R, Majidian AR. Experimental analysis to improving thermosyphon (TPCT) thermal efficiency using nanoparticles/based fluids (water). Eur Phys J Plus. 2017;132:20. https://doi.org/10.1140/epjp/i2017-11455-3.

    Article  CAS  Google Scholar 

  80. Yari A, Hosseinzadeh S, Golneshan AA, Ghasemiasl R. Numerical simulation for thermal design of a gas water heater with turbulent combined convection. In: ASME/JSME/KSME 2015 Joint Fluids Engineering Conference, AJKFluids 2015; 2015. Vol. 1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hoseinzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseinzadeh, S., Heyns, P.S., Chamkha, A.J. et al. Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. J Therm Anal Calorim 138, 727–735 (2019). https://doi.org/10.1007/s10973-019-08203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08203-x

Keywords

Navigation