Skip to main content
Log in

Impacts of magnetic field and non-homogeneous nanofluid model on convective heat transfer and entropy generation in a cavity with heated trapezoidal body

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A numerical study is made on the entropy generation and magnetohydrodynamics natural convection of \(\hbox {Al}_{2}\hbox {O}_3\)-water non-homogeneous nanofluid inside a square enclosure equipped with a heated trapezoidal body. The Galerkin weighted residual finite element method is applied to solve the dimensionless governing equations within the utilized computational domain along with the algorithm of Newton–Raphson iteration that is used for simplifying the nonlinear terms in the equations. The characteristics of fluid flow fields, temperature distributions and entropy generation are studied for an enormous range of the Rayleigh number \((10^{3}\le Ra \le 10^{6})\), volume fraction of nanoparticles (\(0\le \phi \le 0.04\)), Hartmann number \((0\le Ha \le 50)\), thermal conductivity of the trapezoidal solid body (\(k_{\mathrm{w}}=0.5\), 0.76, 1.95, 7 and 16) and the height of the trapezoidal solid body (\(0.15 \le D \le 0.45\)). It is shown that the streamlines pattern is more sensitive to the increase in the Hartmann number in comparison with the augmentation of the volume fraction of nanoparticles. Also, for a more thermodynamically optimized system, the higher Hartmann number at a higher solid volume fraction of nanofluid is recommended as they show less entropy generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(\mathbf{B}\) :

Applied magnetic field

\(\mathbf B\) :

Magnitude of magnetic field

Be :

Bejan number

\(C_{\mathrm{p}}\) :

Specific heat capacity

\(d_{\mathrm{f}}\) :

Diameter of the base fluid molecule

\(d_{\mathrm{p}}\) :

Diameter of the nanoparticle

D :

Dimensionless length of the trapezoidal solid body, \(D=d/L\)

\(D_{\mathrm{B}}\) :

Brownian diffusion coefficient

\(D_{\mathrm{B}0}\) :

Reference Brownian diffusion coefficient

\(D_{\mathrm{T}}\) :

Thermophoretic diffusivity coefficient

\(D_{\mathrm{T}0}\) :

Reference thermophoretic diffusion coefficient

g :

Acceleration of the gravity

GEG:

Dimensionless global entropy generation

H :

Dimensionless width of the trapezoidal solid body, \(H=h/L\)

Ha :

Hartmann number

k :

Thermal conductivity

\(K_{\mathrm{r}}\) :

Square wall to nanofluid thermal conductivity ratio, \(K_{\mathrm{r}}=k_{\mathrm{w}}/k_{\mathrm{nf}}\)

L :

Width and height of enclosure

Le :

Lewis number

\(N_{\mathrm{BT}}\) :

Ratio of Brownian to thermophoretic diffusivity

\(N_{\mu }\) :

Irreversibility distribution ratio

\(\overline{Nu}\) :

Average Nusselt number

Pr :

Prandtl number

\(Re_{\mathrm{B}}\) :

Brownian motion Reynolds number

Sc :

Schmidt number

\(S_{\mathrm{gen}}\) :

Entropy generation rate

\(S_{\mathrm{GEN}}\) :

Dimensionless entropy generation rate

\(S_{\theta }\) :

Dimensionless entropy generation due to heat transfer irreversibility

\(S_{\varPsi }\) :

Dimensionless entropy generation nanofluid friction irreversibility

T :

Temperature

\(T_0\) :

Reference temperature (310 K)

\(T_{\mathrm{fr}}\) :

Freezing point of the base fluid (273.15 K)

\(\mathbf v\), \(\mathbf V\) :

Velocity and dimensionless velocity vector

\(u_{\mathrm{B}}\) :

Brownian velocity of the nanoparticle

x, y and X, Y :

Space coordinates and dimensionless space coordinates

\(\alpha\) :

Thermal diffusivity

\(\gamma\) :

Inclination angle of magnetic field

\(\beta\) :

Thermal expansion coefficient

\(\delta\) :

Normalized temperature parameter

\(\theta\) :

Dimensionless temperature

\(\mu\) :

Dynamic viscosity

\(\nu\) :

Kinematic viscosity

\(\rho\) :

Density

\(\sigma\) :

Electrical conductivity

\(\varphi\) :

Solid volume fraction

\(\varphi ^{*}\) :

Normalized solid volume fraction

\(\phi\) :

Average solid volume fraction

b:

Bottom wall

c:

Cold

f:

Base fluid

h:

Hot

nf:

Nanofluid

p:

Solid nanoparticles

t:

Top wall

w:

Trapezoidal solid wall

References

  1. Alsabery AI, Hashim I, Chamkha AJ, Saleh H, Chanane B. Effect of spatial side-wall temperature variation on transient natural convection of a nanofluid in a trapezoidal cavity. Int J Numer Methods Heat Fluid Flow. 2017;27(6):1365.

    Article  Google Scholar 

  2. Yousofvand R, Derakhshan S, Ghasemi K, Siavashi M. MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation. Int J Mech Sci. 2017;133:73.

    Article  Google Scholar 

  3. Mohebbi R, Lakzayi H, Sidik NAC, Japar WMAA. Lattice Boltzmann method based study of the heat transfer augmentation associated with Cu/water nanofluid in a channel with surface mounted blocks. Int J Heat Mass Transf. 2018;117:425.

    Article  CAS  Google Scholar 

  4. Ma Y, Mohebbi R, Rashidi M, Yang Z. Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Phys Fluids. 2018;30(3):032001.

    Article  CAS  Google Scholar 

  5. Siavashi M, Yousofvand R, Rezanejad S. Nanofluid and porous fins effect on natural convection and entropy generation of flow inside a cavity. Adv Powder Technol. 2018;29(1):142.

    Article  CAS  Google Scholar 

  6. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I. Conjugate natural convection of \({\text{Al}}_{2}{\text{O}}_{3}\)-water nanofluid in a square cavity with a concentric solid insert using Buongiorno’s two-phase model. Int J Mech Sci. 2018;136:200.

    Article  Google Scholar 

  7. Abchouyeh MA, Mohebbi R, Fard OS. Lattice Boltzmann simulation of nanofluid natural convection heat transfer in a channel with a sinusoidal obstacle. Int J Mod Phys C. 2018;29(09):1850079.

    Article  CAS  Google Scholar 

  8. Mohebbi R, Izadi M, Delouei AA, Sajjadi H. Effect of MWCNT-\({\text{Fe}}_{3}{\text{O}}_{4}\)/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7483-5.

    Article  Google Scholar 

  9. Nayak RK, Bhattacharyya S, Pop I. Effects of nanoparticles dispersion on the mixed convection of a nanofluid in a skewed enclosure. Int J Heat Mass Transf. 2018;125:908.

    Article  CAS  Google Scholar 

  10. Emami RY, Siavashi M, Moghaddam GS. The effect of inclination angle and hot wall configuration on Cu-water nanofluid natural convection inside a porous square cavity. Adv Powder Technol. 2018;29(3):519.

    Article  CAS  Google Scholar 

  11. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, et al. Recent advances in modeling and simulation of nanofluid flows-Part II: applications. Phys Rep. 2019;791:1.

    Article  CAS  Google Scholar 

  12. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, et al. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2019;790:1.

    Article  CAS  Google Scholar 

  13. Rahman MM, Pop I, Saghir MZ. Steady free convection flow within a titled nanofluid saturated porous cavity in the presence of a sloping magnetic field energized by an exothermic chemical reaction administered by Arrhenius kinetics. Int J Heat Mass Transf. 2019;129:198.

    Article  CAS  Google Scholar 

  14. Torrance K, Davis R, Eike K, Gill P, Gutman D, Hsui A, Lyons S, Zien H. Cavity flows driven by buoyancy and shear. J Fluid Mech. 1972;51(2):221.

    Article  Google Scholar 

  15. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys. 1982;48(3):387.

    Article  Google Scholar 

  16. Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128(3):240.

    Article  Google Scholar 

  17. Ghassemi M, Pirmohammadi M, Sheikhzadeh GA. In: ASME 2008 heat transfer summer conference collocated with the fluids engineering, energy sustainability, and 3rd energy nanotechnology conferences. American Society of Mechanical Engineers; 2008. p. 141–147.

  18. Oztop HF, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int J Heat Fluid Flow. 2008;29(5):1326.

    Article  Google Scholar 

  19. Ghasemi B, Aminossadati S, Raisi A. Magnetic field effect on natural convection in a nanofluid-filled square enclosure. Int J Therm Sci. 2011;50(9):1748.

    Article  CAS  Google Scholar 

  20. Parvin S, Chamkha AJ. An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid. Int Commun Heat Mass Transf. 2014;54:8.

    Article  CAS  Google Scholar 

  21. Sheikholeslami M, Gorji-Bandpy M, Ganji DD, Soleimani S. Heat flux boundary condition for nanofluid filled enclosure in presence of magnetic field. J Mol Liq. 2014;193:174.

    Article  CAS  Google Scholar 

  22. Ahrar AJ, Djavareshkian MH. Lattice Boltzmann simulation of a Cu-water nanofluid filled cavity in order to investigate the influence of volume fraction and magnetic field specifications on flow and heat transfer. J Mol Liq. 2016;215:328.

    Article  CAS  Google Scholar 

  23. Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017;72:70.

    Article  CAS  Google Scholar 

  24. Ghasemi K, Siavashi M. MHD nanofluid free convection and entropy generation in porous enclosures with different conductivity ratios. J Magn Magn Mater. 2017;442:474.

    Article  CAS  Google Scholar 

  25. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Effect of hot obstacle position on natural convection heat transfer of MWCNTs-water nanofluid in U-shaped enclosure using lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2019;29:223–50.

    Article  Google Scholar 

  26. Ma Y, Mohebbi R, Rashidi MM, Yang Z. Simulation of nanofluid natural convection in a U-shaped cavity equipped by a heating obstacle: effect of cavity’s aspect ratio. J Taiwan Inst Chem Eng. 2018;93:263–76.

    Article  CAS  Google Scholar 

  27. Izadi M, Mohebbi R, Chamkha A, Pop I. Effects of cavity and heat source aspect ratios on natural convection of a nanofluid in a C-shaped cavity using lattice Boltzmann method. Int J Numer Methods Heat Fluid Flow. 2018;28(8):1930.

    Article  Google Scholar 

  28. Mohebbi R, Izadi M, Chamkha AJ. Heat source location and natural convection in a C-shaped enclosure saturated by a nanofluid. Phys Fluids. 2017;29(12):122009.

    Article  CAS  Google Scholar 

  29. Izadi M, Mohebbi R, Karimi D, Sheremet MA. Numerical simulation of natural convection heat transfer inside a \(\perp\) shaped cavity filled by a MWCNT-\({\text{Fe}}_{3}{\text{O}}_{4}\)/water hybrid nanofluids using LBM. Chem Eng Process Process Intensif. 2018;125:56.

    Article  Google Scholar 

  30. Siavashi M, Rostami A. Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int J Mech Sci. 2017;133:689.

    Article  Google Scholar 

  31. Sivasankaran S, Alsabery AI, Hashim I. Internal heat generation effect on transient natural convection in a nanofluid-saturated local thermal non-equilibrium porous inclined cavity. Phys A Stat Mech Appl. 2018;509:275–93.

    Article  CAS  Google Scholar 

  32. Alsabery AI, Ismael MA, Chamkha AJ, Hashim I. Effects of two-phase nanofluid model on MHD mixed convection in a lid-driven cavity in the presence of conductive inner block and corner heater. J Therm Anal Calorim. 2019;135:729.

    Article  CAS  Google Scholar 

  33. Siavashi M, Rasam H, Izadi A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J Therm Anal Calorim. 2018;135:1399.

    Article  CAS  Google Scholar 

  34. Alsabery AI, Sheremet MA, Chamkha AJ, Hashim I. Impact of nonhomogeneous nanofluid model on transient mixed convection in a double lid-driven wavy cavity involving solid circular cylinder. Int J Mech Sci. 2019;150:637.

    Article  Google Scholar 

  35. Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789.

    Article  CAS  Google Scholar 

  36. Maxwell JC. A treatise on electricity and magnetism, vol II. Clarendon. Oxford: Oxford University Press; 1904.

    Google Scholar 

  37. Calcagni B, Marsili F, Paroncini M. Natural convective heat transfer in square enclosures heated from below. Appl Therm Eng. 2005;25(16):2522.

    Article  CAS  Google Scholar 

  38. Ho CJ, Liu WK, Chang YS, Lin CC. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49(8):1345.

    Article  CAS  Google Scholar 

  39. Sheikhzadeh GA, Dastmalchi M, Khorasanizadeh H. Effects of nanoparticles transport mechanisms on \({\text{Al}}_{2}{\text{O}}_{3}\)-water nanofluid natural convection in a square enclosure. Int J Therm Sci. 2013;66:51.

    Article  Google Scholar 

  40. Motlagh SY, Soltanipour H. Natural convection of \({\text{Al}}_{2}{\text{O}}_{3}\)-water nanofluid in an inclined cavity using Buongiorno’s two-phase model. Int J Therm Sci. 2017;111:310.

    Article  Google Scholar 

  41. Corcione M, Cianfrini M, Quintino A. Two-phase mixture modeling of natural convection of nanofluids with temperature-dependent properties. Int J Therm Sci. 2013;71:182.

    Article  CAS  Google Scholar 

  42. Bergman TL, Incropera FP. Introduction to heat transfer. 6th ed. New York: Wiley; 2011.

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Universiti Kebangsaan Malaysia (UKM) research grant DIP-2017-010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Alsabery.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsabery, A.I., Mohebbi, R., Chamkha, A.J. et al. Impacts of magnetic field and non-homogeneous nanofluid model on convective heat transfer and entropy generation in a cavity with heated trapezoidal body. J Therm Anal Calorim 138, 1371–1394 (2019). https://doi.org/10.1007/s10973-019-08249-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08249-x

Keywords

Navigation