Skip to main content
Log in

Investigation of latent heat storage system using graphite micro-particle enhancement

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Low-temperature energy storage system (LTESS) stores the thermal energy from the sun, exhaust gases and waste heat from industries and other sources. Phase changing materials (PCM) are used as the energy storage medium for this system. The advantage of PCM is that it has higher energy storage density, with low volume. The disadvantage of PCM for using as LTESS is that the thermal conductivity of PCM is less and this requires more time period and surface area of contact, for loading and unloading of thermal energy. A solution to this problem can be incorporating graphite micro-particles in the paraffin PCM to improve its thermal conductivity. The heat transfer of LTESS is determined experimentally. Incorporating micro-particle in the PCM has improved the heat transfer of the LTESS. Maxwell–Garnett equation is used to determine the heat transfer of PCM and J-type temperature measuring probe, and sensor apparatus is used to determine the heat transfer experimentally. The encapsulation has increased the heat-retaining ability and storage time by about 40% on average for the flow rates tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Giro-Paloma J, Alkan C, Chimenos J, Fernández A. Comparison of microencapsulated phase change materials prepared at laboratory containing the same core and different shell material. Appl Sci. 2017;7:723. https://doi.org/10.3390/app7070723.

    Article  CAS  Google Scholar 

  2. Zheng X, Xie N, Chen C, Gao X, Huang Z, Zhang Z. Numerical investigation on paraffin/expanded graphite composite phase change material based latent thermal energy storage system with double spiral coil tube. Appl Therm Eng. 2018;137:164–72. https://doi.org/10.1016/j.applthermaleng.2018.03.048.

    Article  CAS  Google Scholar 

  3. Zeng JL, Chen YH, Shu L, Yu LP, Zhu L, Song L-B, Cao Z, Sun LX. Preparation and thermal properties of exfoliated graphite/erythritol/mannitol eutectic composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells. 2018;178:84–90. https://doi.org/10.1016/j.solmat.2018.01.012.

    Article  CAS  Google Scholar 

  4. Aljehani A, Razack SAK, Nitsche L, Al-Hallaj S. Design and optimization of a hybrid air conditioning system with thermal energy storage using phase change composite. Energy Convers Manag. 2018;169:404–18. https://doi.org/10.1016/j.enconman.2018.05.040.

    Article  CAS  Google Scholar 

  5. Guo X, Zhang S, Cao J. An energy-efficient composite by using expanded graphite stabilized paraffin as phase change material. Compos Part A Appl Sci Manuf. 2018;107:83–93. https://doi.org/10.1016/j.compositesa.2017.12.032.

    Article  CAS  Google Scholar 

  6. Huang Z, Luo Z, Gao X, Fang X, Fang Y, Zhang Z. Preparation and thermal property analysis of Wood’s alloy/expanded graphite composite as highly conductive form-stable phase change material for electronic thermal management. Appl Therm Eng. 2017;122:322–9. https://doi.org/10.1016/j.applthermaleng.2017.04.154.

    Article  CAS  Google Scholar 

  7. Zhang D, Chen M, Liu Q, Wan J, Hu J. Preparation and thermal properties of molecular-bridged expanded graphite/polyethylene glycol composite phase change materials for building energy conservation. Materials (Basel). 2018;11:818. https://doi.org/10.3390/ma11050818.

    Article  CAS  Google Scholar 

  8. Chinnarasu K, Ranjithkumar M, Lakshmanan P, Hariharan KB. Analysis of varying geometri structures of fins using radiators. J. Appl. Fluid Mech. 2018;11:115–9.

    Article  Google Scholar 

  9. Avudaiappan T, Vijayan V, Pandiyan SS, Saravanan M, Dinesh S. Potential flow simulation through lagrangian interpolation meshless method coding. J Appl Fluid Mech. 2018;11:129–34.

    Google Scholar 

  10. Srinivasan R, Vijayan V, Sridhar K. Computational fluid dynamic analysis of missile with grid fins. J Appl Fluid Mech. 2017;10:33–9.

    Google Scholar 

  11. Xia Y, Cui W, Zhang H, Zou Y, Xiang C, Chu H, Qiu S, Xu F, Sun L. Preparation and thermal performance of n-octadecane/expanded graphite composite phase-change materials for thermal management. J Therm Anal Calorim. 2018;131:81–8. https://doi.org/10.1007/s10973-017-6556-1.

    Article  CAS  Google Scholar 

  12. Wen R, Jia P, Huang Z, Fang M, Liu Y, Wu X, Min X, Gao W. Thermal energy storage properties and thermal reliability of PEG/bone char composite as a form-stable phase change material. J Therm Anal Calorim. 2018;132:1753–61. https://doi.org/10.1007/s10973-017-6934-8.

    Article  CAS  Google Scholar 

  13. Tang Y, Lin Y, Jia Y, Fang G. Improved thermal properties of stearyl alcohol/high density polyethylene/expanded graphite composite phase change materials for building thermal energy storage. Energy Build. 2017;153:41–9. https://doi.org/10.1016/j.enbuild.2017.08.005.

    Article  Google Scholar 

  14. Li Y, Yan H, Wang Q, Wang H, Huang Y. Structure and thermal properties of decanoic acid/expanded graphite composite phase change materials. J Therm Anal Calorim. 2017;128:1313–26. https://doi.org/10.1007/s10973-016-6068-4.

    Article  CAS  Google Scholar 

  15. Karaipekli A, Biçer A, Sarı A, Tyagi VV. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Convers Manag. 2017;134:373–81. https://doi.org/10.1016/j.enconman.2016.12.053.

    Article  CAS  Google Scholar 

  16. Ghasemi Bahraseman H, Languri EM, East J. Fast charging of thermal energy storage systems enabled by phase change materials mixed with expanded graphite. Int J Heat Mass Transf. 2017;109:1052–8. https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.078.

    Article  CAS  Google Scholar 

  17. Sharshir SW, Peng G, Wu L, Essa FA, Kabeel AE, Yang N. The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Appl Energy. 2017;191:358–66. https://doi.org/10.1016/j.apenergy.2017.01.067.

    Article  CAS  Google Scholar 

  18. Cheng F, Wen R, Huang Z, Fang M, Liu Y, Wu X, Min X. Preparation and analysis of lightweight wall material with expanded graphite (EG)/paraffin composites for solar energy storage. Appl Therm Eng. 2017;120:107–14. https://doi.org/10.1016/j.applthermaleng.2017.03.129.

    Article  CAS  Google Scholar 

  19. Yang H, Wang Y, Liu Z, Liang D, Liu F, Zhang W, Di X, Wang C, Ho SH, Chen WH. Enhanced thermal conductivity of waste sawdust-based composite phase change materials with expanded graphite for thermal energy storage. Bioresour Bioprocess. 2017;4:52. https://doi.org/10.1186/s40643-017-0182-4.

    Article  Google Scholar 

  20. Lin Y, Jia Y, Alva G, Fang G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew Sustain Energy Rev. 2018;82:2730–42. https://doi.org/10.1016/j.rser.2017.10.002.

    Article  CAS  Google Scholar 

  21. Ferrer G, Barreneche C, Solé A, Martorell I, Cabeza LF. New proposed methodology for specific heat capacity determination of materials for thermal energy storage (TES) by DSC. J Energy Storage. 2017;11:1–6. https://doi.org/10.1016/j.est.2017.02.002.

    Article  CAS  Google Scholar 

  22. Wei G, Wang G, Xu C, Ju X, Xing L, Du X, Yang Y. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review. Renew Sustain Energy Rev. 2018;81:1771–86. https://doi.org/10.1016/j.rser.2017.05.271.

    Article  CAS  Google Scholar 

  23. Xu T, Li Y, Chen J, Liu J. Preparation and thermal energy storage properties of LiNO3–KCl–NaNO3/expanded graphite composite phase change material. Sol Energy Mater Sol Cells. 2017;169:215–21. https://doi.org/10.1016/j.solmat.2017.05.035.

    Article  CAS  Google Scholar 

  24. Ye R, Lin W, Yuan K, Fang X, Zhang Z. Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material. Appl Energy. 2017;193:325–35. https://doi.org/10.1016/j.apenergy.2017.02.049.

    Article  CAS  Google Scholar 

  25. Li C, Xie B, Chen J, Chen Z, Sun X, Gibb SW. H2O2-microwave treated graphite stabilized stearic acid as a composite phase change material for thermal energy storage. RSC Adv. 2017;7:52486–95. https://doi.org/10.1039/c7ra11016b.

    Article  CAS  Google Scholar 

  26. Liu S, Han L, Xie S, Jia Y, Sun J, Jing Y, Zhang Q. A novel medium-temperature form-stable phase change material based on dicarboxylic acid eutectic mixture/expanded graphite composites. Sol Energy. 2017;143:22–30. https://doi.org/10.1016/j.solener.2016.12.027.

    Article  CAS  Google Scholar 

  27. Babu KA, Venkataramaiah P, Dileep P. AHP-DENG’S similarity based optimization of WEDM process parameters of Al/SiCp composite. Am J Mater Sci Technol. 2017;6:1–14. https://doi.org/10.7726/ajmst.2017.1001.

    Article  CAS  Google Scholar 

  28. Nanthagopal K, Ashok B, Tamilarasu A, Johny A, Mohan A. Influence on the effect of zinc oxide and titanium dioxide nanoparticles as an additive with Calophyllum inophyllum methyl ester in a CI engine. Energy Convers Manag. 2017;146:8–19. https://doi.org/10.1016/j.enconman.2017.05.021.

    Article  CAS  Google Scholar 

  29. Khan Z, Ahmad Khan Z. Experimental and numerical investigations of nano-additives enhanced paraffin in a shell-and-tube heat exchanger: a comparative study. Appl Therm Eng. 2018;143:777–90. https://doi.org/10.1016/j.applthermaleng.2018.07.141.

    Article  CAS  Google Scholar 

  30. Raud R, Cholette ME, Riahi S, Bruno F, Saman W. Design optimization method for tube and fin latent heat thermal energy storage systems. Energy. 2017;134:585–94. https://doi.org/10.1016/j.energy.2017.06.013.

    Article  Google Scholar 

  31. Sarbu I. A comprehensive review of thermal energy storage. Sustainability. 2018;10:191. https://doi.org/10.3390/su10010191.

    Article  CAS  Google Scholar 

  32. Water IR. Thermal analysis of a thermal energy storage unit; 2017. https://doi.org/10.3390/en10020219.

    Article  Google Scholar 

  33. Venkatesh R, Vijayan V. Performance evaluation of multipurpose solar heating system. Mech Mech Eng. 2016;20:359–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dhandayuthabani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhandayuthabani, M., Jegadheeswaran, S., Vijayan, V. et al. Investigation of latent heat storage system using graphite micro-particle enhancement. J Therm Anal Calorim 139, 2181–2186 (2020). https://doi.org/10.1007/s10973-019-08625-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08625-7

Keywords

Navigation