Skip to main content
Log in

Entropy generation in nonlinear mixed convective flow of nanofluid in porous space influenced by Arrhenius activation energy and thermal radiation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Here, nonlinear mixed convective flow of nanomaterials over a porous stretching sheet is discussed. The Buongiorno model is used in the mathematical modeling. Important aspects of Buongiorno model, i.e., Brownian movement and thermophoresis are addressed. Further impact of activation energy, viscous dissipation, Joule heating and nonlinear thermal radiation retained in energy and concentration expressions. Optimization of entropy generation rate is discussed. The governing systems are modeled through dimensionless variables. The series solutions are constructed via OHAM algorithm. Features of various sundry variables are interpreted and deliberated. Our analysis reveals that entropy enhances via higher estimation of Reynolds number, radiation and magnetic variables. Our analysis reveals that Bejan number shows decaying feature via Brinkman number and magnetic parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Bestman AR. Natural convection boundary layer with suction and mass transfer in a porous medium. Int J Energy Res. 1990;14:389–96.

    Article  CAS  Google Scholar 

  2. Makinde OD, Olanrewaju PO, Charles WM. Unsteady convection with chemical reaction and radiative heat transfer past a flat porous plate moving through a binary mixture. Afr Mat. 2011;22:65–78.

    Article  Google Scholar 

  3. Maleque KA. Effects of exothermic/endothermic chemical reactions with Arrhenius activation energy on MHD free convection and mass transfer flow in presence of thermal radiation. J Thermodyn. 2013;2013:692516.

    Article  CAS  Google Scholar 

  4. Abbas Z, Sheikh M, Motsa SS. Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal radiation. Energy. 2016;95:12–20.

    Article  CAS  Google Scholar 

  5. Shafique Z, Mustafa M, Mushtaq A. Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. Results Phys. 2016;6:627–33.

    Article  Google Scholar 

  6. Mustafa M, Khan JA, Hayat T, Alsaedi A. Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. Int J Heat Mass Transf. 2017;108:1340–6.

    Article  CAS  Google Scholar 

  7. Zeeshan A, Shehzad N, Ellahi R. Analysis of activation energy in Couette–Poiseuille flow of nanofluid in the presence of chemical reaction and convective boundary conditions. Results Phys. 2018;8:502–12.

    Article  Google Scholar 

  8. Anuradha S, Yegammai M. MHD radiative boundary layer flow of nanofluid past a vertical plate with effects of binary chemical reaction and activation energy. Glob J Pure Appl Math. 2017;13:6377–92.

    Google Scholar 

  9. Khan AA, Masood F, Ellahi R, Bhatti MM. Mass transport on chemicalized fourth-grade fluid propagating peristaltically through a curved channel with magnetic effects. J Mol Liq. 2018;258:186–95.

    Article  CAS  Google Scholar 

  10. Gireesha BJ, Mahanthesh B, Prasannakumara BC. Exploration of activation energy and binary chemical reaction effects on nano Casson fluid flow with thermal and exponential space-based heat source. Multidiscip Model Mater Struct. 2019;15:227–45.

    Article  Google Scholar 

  11. Hayat T, Khan AA, Bibi F, Farooq S. Activation energy and non-Darcy resistance in magneto peristalsis of Jeffrey material. J Phys Chem Solids. 2019;129:155–61.

    Article  CAS  Google Scholar 

  12. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publication- Fed. 1995;231:99–106.

    CAS  Google Scholar 

  13. Buongiorno J. Convective transfort in nanofluids. ASME J Heat Transf. 2006;128:240–50.

    Article  Google Scholar 

  14. Abu-Nada E, Oztop HF. Effect of inclination angle on natural convection in enclosure filled with Cu-water nanofluid. Int J Heat Fluid Flow. 2009;30:669–106.

  15. Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater. 2015;374:36–43.

    Article  CAS  Google Scholar 

  16. Shehzad N, Zeeshan A, Ellahi R, Vafai K. Convective heat transfer of nanofluid in a wavy channel: Buongiorno’s mathematical model. J Mol Liq. 2016;222:446–55.

    Article  CAS  Google Scholar 

  17. Waqas M, Khan MI, Hayat T, Alsaedi A, Khan MI. Nonlinear thermal radiation in flow induced by a slendering surface accounting thermophoresis and Brownian diffusion. Eur Phys J Plus. 2017;132:132–40.

    Article  CAS  Google Scholar 

  18. Eid MR, Alsaedi A, Muhammad T, Hayat T. Comprehensive analysis of heat transfer of gold-blood nanofuid (Siskomodel) with thermal radiation. Results Phys. 2017;7:4388–93.

    Article  Google Scholar 

  19. Hayat T, Ullah I, Alsaedi A, Waqas M, Ahmad B. Three-dimensional mixed convection flow of Sisko nanoliquid. Int J Mech Sci. 2017;133:273–82.

    Article  Google Scholar 

  20. Sheikholeslami M, Hayat T, Muhammad T, Alsaedi A. MHD forced convection fow of nanofuid in a porous cavity with hot elliptic obstacle by means of Lattice Boltzmann method. Int J Mech Sci. 2018;135:532–40.

    Article  Google Scholar 

  21. Hayat T, Ullah I, Alsaedi A, Asghar S. Flow of magneto Williamson nanoliquid towards stretching sheet with variable thickness and double stratification. Radiat Phys Chem. 2018;152:151–7.

    Article  CAS  Google Scholar 

  22. Manay E, Akyürek EF, Sahin B. Entropy generation of nanofluid flow in a microchannel heat sink. Results Phys. 2018;9:615–24.

    Article  Google Scholar 

  23. Abbasia FM, Shanakhata I, Shehzad SA. Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. J Magn Magn Mater. 2019;474:434–41.

    Article  CAS  Google Scholar 

  24. Hatami M, Kheirkhah A, Ghanbari-Rad H, Jing D. Numerical heat transfer enhancement using different nanofluids flow through venturi and wavy tubes. Case Stud Therm Eng. 2019;13:100368.

    Article  Google Scholar 

  25. Ashlin TS, Mahanthesh B. Exact solution of non-coaxial rotating and non-linear convective flow of Cu–Al2O3–H2O hybrid nanofluids over an infinite vertical plate subjected to heat source and radiative heat. J Nanofluids. 2019;8:781–94.

    Article  Google Scholar 

  26. Shruthy M, Mahanthesh B. Rayleigh–Bénard convection in Casson and hybrid nanofluids: an analytical investigation. J. Nanofluids. 2019;8:222–9.

    Article  Google Scholar 

  27. Animasaun L, Koriko OK, Adegbie KS, Babatunde HA, Ibraheem RO, Sandeep N, Mahanthesh B. Comparative analysis between 36 nm and 47 nm alumina-water nanofluid flows in the presence of Hall effect. J Therm Anal Calorim. 2019;135:873–86.

    Article  CAS  Google Scholar 

  28. Muhammad T, Lu DC, Mahanthesh B, Eid MR, Ramzan M, Dar A. Significance of Darcy–Forchheimer porous medium in nanofluid through carbon nanotubes. Commun Theor Phys. 2018;70:361.

    Article  CAS  Google Scholar 

  29. Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows–PartI: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  30. Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows–PartI: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  31. Bejan AA. Study of entropy generation in fundamental convective heat transfer. J Heat Transf. 1979;101:718–25.

    Article  Google Scholar 

  32. Ting TW, Hung YM, Guo N. Entropy generation of viscous dissipative nanofluid flow in thermal non-equilibrium porous media embedded in microchannels. Int J Heat Mass Transf. 2015;81:862–77.

    Article  CAS  Google Scholar 

  33. Mkwizu MH, Makinde OD. Entropy generation in a variable viscosity channel flow of nanofluids with convective cooling. CR Mec. 2015;343:38–56.

    Article  Google Scholar 

  34. Huang YY, Zhang LJ, Yang G, Wu JY. Secondary flow and entropy generation of laminar mixed convection in the entrance region of a horizontal square duct. J Heat Transf. 2017;140:7.

    Google Scholar 

  35. Aracely L, Guillermo I, Joel P, Joel M, Orlando L. Entropy generation analysis of MHD nanofluid flow in a porous vertical microchannel with nonlinear thermal radiation, slip flow and convective-radiative boundary conditions. Int J Heat Mass Transf. 2017;107:982–94.

    Article  CAS  Google Scholar 

  36. Khan MI, Qayyum S, Hayat T, Alsaedi A, Khan MI. Investigation of Sisko fluid through entropy generation. J Mol Liq. 2018;257:155–63.

    Article  CAS  Google Scholar 

  37. Khan MI, Khan TA, Hayat T, Khan MI, Qayyum S, Alsaedi A, Ullah I. Irreversibility analysis and heat transfer performance of Williamson nanofluid over a stretched surface. Heat Transf Res. 2018;. https://doi.org/10.1615/HeatTransRes.2018026342.

    Article  Google Scholar 

  38. Li X, Faghri A. Local entropy generation analysis on passive high-concentration DMFCs (direct methanol fuel cell) with different cell structures. Energy. 2011;36:5416–23.

    Article  CAS  Google Scholar 

  39. Ibáñez G. Entropy generation in MHD porous channel with hydrodynamic slip and convective boundary conditions. Int J Heat Mass Transf. 2015;80:274–80.

    Article  Google Scholar 

  40. Liao SJ. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun Nonlinear Sci Numer Simul. 2010;15:2003–16.

    Article  Google Scholar 

  41. Dehghan M, Manafian J, Saadatmandi A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer Methods Partial Diff Equ. 2010;26:448–79.

    Google Scholar 

  42. Malvandi, Hedayati AF, Domairry G. Stagnation point flow of a nanofluid toward an exponentially stretching sheet with nonuniform heat generation/absorption. J Thermodyn. 2013;(2013):764827.

  43. Ellahi R, Hassan M, Zeeshan A. Shape effects of nanosize particles in Cu–H2O nanofluid on entropy generation. Int J Heat Mass Transf. 2015;81:449–56.

    Article  CAS  Google Scholar 

  44. Turkyilmazoglu M. An effective approach for evaluation of the optimal convergence control parameter in the homotopy analysis method. Filomat. 2016;30:1633–50.

    Article  Google Scholar 

  45. Hayat T, Muhammad K, Ullah I, Alsaedi A, Asghar S. Rotating squeezed flow with carbon nanotubes and melting heat. Phys Scr. 2018;94:035702.

    Article  CAS  Google Scholar 

  46. Rivlin RL, Ericksen JL. Stress deformation relations for isotropic materials. J Ration Mech Anal. 1955;4:323–425.

    Google Scholar 

  47. Hayat T, Ullah I, Waqas M, Alsaedi A. Attributes of activation energy and exponential based heat source in flow of Carreau fluid with cross-diffusion effects. J Non-Equilib Thermodyn 2018;44:. https://doi.org/10.1515/jnet-2018-0049.

  48. Hayat T, Ullah I, Alsaedi A, Ahmad B. Simultaneous effects of non-linear mixed convection and radiative flow due to Riga-plate with double stratification. J Heat Transf. 2018;140:102008.

    Article  CAS  Google Scholar 

  49. Amala S, Mahanthesh B. Hybrid nanofluid flow over a vertical rotating plate in the presence of Hall current, nonlinear convection and heat absorption. J Nanofluids. 2018;7:1138–48.

    Article  Google Scholar 

  50. Hayat T, Ali S, Alsaedi A, Alsulami HH. Influence of thermal radiation and Joule heating in the Eyring–Powell fluid flow with the Soret and Dufour effects. J Appl Mech Tech Phys. 2016;57:1051–60.

    Article  CAS  Google Scholar 

  51. Hayat T, Ali S, Awis M, Alsedi A. Joule heating effect on MHD flow of Burger’s fluid. Heat Transf Res. 2016;47:1083–92.

    Article  Google Scholar 

  52. Gorla RSR, Sidawi I. Free convection on a vertical stretching surface with suction and blowing. Appl Sci Res. 1994;52:247–57.

    Article  Google Scholar 

  53. Hayat T, Khan SA, Khan MI, Alsaedi A. Optimizing the theoretical analysis of entropy generation in the flow of second grade nanofluid. Phys Scr. 2019;94:085001.

    Article  CAS  Google Scholar 

  54. Khan WA, Pop I. Boundary-layer flow of a nanofluid past a stretching sheet. Int J Heat Mass Transf. 2010;53:2477–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under grant no. (RG-7-135-40). The authors, therefore acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikram Ullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsaadi, F.E., Ullah, I., Hayat, T. et al. Entropy generation in nonlinear mixed convective flow of nanofluid in porous space influenced by Arrhenius activation energy and thermal radiation. J Therm Anal Calorim 140, 799–809 (2020). https://doi.org/10.1007/s10973-019-08648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08648-0

Keywords

Navigation