Skip to main content
Log in

Calorimetric study of siloxane dendrimer of the third generation with trimethylsilyl terminal groups

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The molar heat capacity of siloxane dendrimer of the third generation with trimethylsilyl terminal groups G3[OSi(CH3)3]24 was determined by precise adiabatic calorimetry and differential scanning calorimetry over the temperature range T = (6–570) K for the first time. The low-temperature structural anomaly and the glass transition were observed in the above temperature range, and the standard thermodynamic characteristics of the revealed transformations were determined and analyzed. The fundamental thermodynamic functions such as the enthalpy [H°(T) − H°(0)], the entropy [S°(T) − S°(0)], and the Gibbs energy [G°(T) − H°(0)] were calculated for the range from T → 0 to 570 K based on the experimentally determined molar heat capacity of the investigated compound. The standard entropy of formation ΔfS° of dendrimer G3[OSi(CH3)3]24 was evaluated at T = 298.15 K. The thermal stability of the studied compound was investigated by thermogravimetric analysis. The standard thermodynamic properties of siloxane dendrimer G3[OSi(CH3)3]24 were compared and discussed with the previously reported data for the studied G3 carbosilane dendrimers with different functional terminal groups on the surface layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fréchet JMJ, Tomalia DA. Dendrimers and other dendritic polymers. Chichester: Wiley; 2001. https://doi.org/10.1002/0470845821.

    Book  Google Scholar 

  2. Newkome GR, Moorefield CN, Vögtle F. Dendrimers and dendrons: concepts, syntheses, applications. Weinheim: Wiley; 2001. https://doi.org/10.1002/3527600612.

    Book  Google Scholar 

  3. Muzafarov AM, Vasilenko NG, Tatarinova EA, Ignat’eva GM, Myakushev VM, Obrezkova MA, Meshkov IB, Voronina NV, Novozhilov OV. Macromolecular nano-objects as a promising direction of polymer chemistry. Polym Sci Ser C. 2011;53:48–60. https://doi.org/10.1134/S1811238211070022.

    Article  CAS  Google Scholar 

  4. Buhleier E, Wehner W, Vögtle F. “Cascade”- and “nonskid-chain-like” syntheses of molecular cavity topologies. Synthesis. 1978;1978:155–8. https://doi.org/10.1055/s-1978-24702.

    Article  Google Scholar 

  5. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, Roeck J, Ryder J, Smith P. A new class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17:117–32. https://doi.org/10.1295/polymj.17.117.

    Article  CAS  Google Scholar 

  6. Newkome GR, Yao Z, Baker GR, Gupta VK. Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem. 1985;50:2003–4. https://doi.org/10.1021/jo00211a052.

    Article  CAS  Google Scholar 

  7. Hawker CJ, Fréchet JMJ. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc. 1990;112:7638–47. https://doi.org/10.1021/ja00177a027.

    Article  CAS  Google Scholar 

  8. Rebrov EA, Muzafarov AM, Papkov VS, Zhdanov AA. Volume-growing polyorganosiloxanes. Proc USSR Acad Sci. 1989;309:376–80.

    CAS  Google Scholar 

  9. Muzafarov AM, Rebrov EA, Papkov VS. Three-dimensionally growing polyorganosiloxanes. Possibilities of molecular construction in highly functional systems. Russ Chem Rev. 1991;60:807–14. https://doi.org/10.1070/RC1991v060n07ABEH001112.

    Article  Google Scholar 

  10. Morikawa A, Kakimoto M, Imai Y. Synthesis and characterization of new polysiloxane starburst polymers. Macromolecules. 1991;24:3469–74. https://doi.org/10.1021/ma00012a001.

    Article  CAS  Google Scholar 

  11. Muzafarov AM, Tatarinova EA, Vasilenko NG, Ignat’eva GM. Organosilicon dendrimers and irregular hyperbranched polymers. In: Lee VY, editor. Organosilicon compounds: experiment (physico-chemical studies) and applications. Cambridge: Academic Press; 2017. p. 323–82. https://doi.org/10.1016/B978-0-12-814213-4.00008-3.

    Chapter  Google Scholar 

  12. Lang H, Lühmann B. Siloxane and carbosiloxane based dendrimers: synthesis, reaction chemistry, and potential applications. Adv Mater. 2001;13:1523–40. https://doi.org/10.1002/1521-4095(200110)13:20%3C1523:AID-ADMA1523%3E3.0.CO;2-P.

    Article  CAS  Google Scholar 

  13. Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chem Rev. 2010;110:1857–959. https://doi.org/10.1021/cr900327d.

    Article  CAS  PubMed  Google Scholar 

  14. Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev. 2012;64:102–15. https://doi.org/10.1016/j.addr.2012.09.030.

    Article  Google Scholar 

  15. Yang J, Zhang Q, Chang H, Cheng Y. Surface-engineered dendrimers in gene delivery. Chem Rev. 2015;115:5274–300. https://doi.org/10.1021/cr500542t.

    Article  CAS  PubMed  Google Scholar 

  16. Liko F, Hindré F, Fernandez-Megia E. Dendrimers as innovative radiopharmaceuticals in cancer radionanotherapy. Biomacromolecules. 2016;17:3103–14. https://doi.org/10.1021/acs.biomac.6b00929.

    Article  CAS  PubMed  Google Scholar 

  17. Lebedev BV, Ryabkov MV, Tatarinova EA, Rebrov EA, Muzafarov AM. Thermodynamic properties of the first to fifth generations of carbosilane dendrimers with allyl terminal groups. Russ Chem Bull. 2003;52:545–51. https://doi.org/10.1023/A:1023977916394.

    Article  CAS  Google Scholar 

  18. Smirnova NN, Stepanova OV, Bykova TA, Markin AV, Muzafarov AM, Tatarinova EA, Myakushev VD. Thermodynamic properties of carbosilane dendrimers of the third to the sixth generations with terminal butyl groups in the range from T → 0 to 600 K. Thermochim Acta. 2006;440:188–94. https://doi.org/10.1016/j.tca.2005.11.009.

    Article  CAS  Google Scholar 

  19. Markin AV, YaS Samosudova, Smirnova NN, Tatarinova EA, Bystrova AV, Muzafarov AM. Thermodynamics of carbosilane dendrimers with diundecylsilyl and diundecylsiloxane terminal groups. J Therm Anal Calorim. 2011;105:663–76. https://doi.org/10.1007/s10973-010-1199-5.

    Article  CAS  Google Scholar 

  20. Smirnova NN, Markin AV, Samosudova YS, Ignat’eva GM, Katarzhnova EY, Muzafarov AM. Thermodynamics of G-3(D4) and G-6(D4) carbosilanecyclosiloxane dendrimers. Russ J Phys Chem A. 2013;87:552–9. https://doi.org/10.1134/S0036024413040262.

    Article  CAS  Google Scholar 

  21. Smirnova NN, Markin AV, Letyanina IA, Sologubov SS, Novozhilova NA, Tatarinova EA, Muzafarov AM. Thermodynamic properties of carbosilane dendrimers of the third and sixth generations with ethyleneoxide terminal groups. Russ J Phys Chem A. 2014;88:735–41. https://doi.org/10.1134/S0036024414050306.

    Article  CAS  Google Scholar 

  22. Markin AV, Sologubov SS, Smirnova NN, Knyazev AV, Mączka M, Ptak M, Novozhilova NA, Tatarinova EA, Muzafarov AM. Calorimetric and infrared studies of carbosilane dendrimers of the third generation with ethyleneoxide terminal groups. Thermochim Acta. 2015;617:144–51. https://doi.org/10.1016/j.tca.2015.08.028.

    Article  CAS  Google Scholar 

  23. Sologubov SS, Markin AV, Smirnova NN, Novozhilova NA, Tatarinova EA, Muzafarov AM. Thermodynamic properties of carbosilane dendrimers of the sixth generation with ethylene oxide terminal groups. J Phys Chem B. 2015;119:14527–35. https://doi.org/10.1021/acs.jpcb.5b06786.

    Article  CAS  PubMed  Google Scholar 

  24. Sologubov SS, Markin AV, Smirnova NN, Rybakova YA, Novozhilova NA, Tatarinova EA, Muzafarov AM. Calorimetric study of carbosilane dendrimers of the third and sixth generations with phenylethyl terminal groups. J Therm Anal Calorim. 2016;125:595–606. https://doi.org/10.1007/s10973-016-5301-5.

    Article  CAS  Google Scholar 

  25. Smirnova NN, Sologubov SS, Sarmini YA, Markin AV, Novozhilova NA, Tatarinova EA, Muzafarov AM. Thermodynamic properties of first- and third-generation carbosilane dendrimers with terminal phenyldioxolane groups. Russ J Phys Chem A. 2017;91:2317–25. https://doi.org/10.1134/S0036024417110279.

    Article  CAS  Google Scholar 

  26. Sologubov SS, Markin AV, Smirnova NN, Novozhilova NA, Tatarinova EA, Muzafarov AM. Thermodynamic properties of a first-generation carbosilane dendrimer with terminal phenylethyl groups. Russ J Phys Chem A. 2018;92:235–43. https://doi.org/10.1134/S0036024418010260.

    Article  CAS  Google Scholar 

  27. Boldyrev K, Tatarinova E, Meshkov I, Vasilenko N, Buzin M, Novikov R, Vasil’ev V, Shtykova E, Feigin L, Bystrova A, Chvalun S, Muzafarov A. New approach to the synthesis of polymethylsilsesquioxane dendrimers. Polymer. 2019;174:159–69. https://doi.org/10.1016/j.polymer.2019.04.030.

    Article  CAS  Google Scholar 

  28. Kurbatov AO, Balabaev NK, Mazo MA, Kramarenko EY. Molecular dynamics simulations of single siloxane dendrimers: molecular structure and intramolecular mobility of terminal groups. J Chem Phys. 2018;148:014902-1–-10. https://doi.org/10.1063/1.5009988.

    Article  CAS  Google Scholar 

  29. Meija J, Coplen TB, Berglund M, Brand WA, De Bièvre P, Gröning M, Holden NE, Irrgeher J, Loss RD, Walczyk T, Prohaska T. Atomic weights of the elements 2013 (IUPAC technical report). Pure Appl Chem. 2016;88:265–91. https://doi.org/10.1515/pac-2015-0305.

    Article  CAS  Google Scholar 

  30. Varushchenko RM, Druzhinina AI, Sorkin EL. Low-temperature heat capacity of 1-bromoperfluorooctane. J Chem Thermodyn. 1997;29:623–37. https://doi.org/10.1006/jcht.1996.0173.

    Article  CAS  Google Scholar 

  31. Sabbah R, Xu-wu A, Chickos JS, Planas Leitão ML, Roux MV, Torres LA. Reference materials for calorimetry and differential thermal analysis. Thermochim Acta. 1999;331:93–204. https://doi.org/10.1016/S0040-6031(99)00009-X.

    Article  CAS  Google Scholar 

  32. Höhne GWH, Hemminger WF, Flammersheim HJ. Differential scanning calorimetry. 2nd ed. Berlin: Springer; 2003. https://doi.org/10.1007/978-3-662-06710-9.

    Book  Google Scholar 

  33. Drebushchak VA. Calibration coefficient of a heat-flow DSC. Part II. Optimal calibration procedure. J Therm Anal Calorim. 2005;79:213–8. https://doi.org/10.1007/s10973-004-0586-1.

    Article  CAS  Google Scholar 

  34. Della Gatta G, Richardson MJ, Sarge SM, Stølen S. Standards, calibration, and guidelines in microcalorimetry. Part 2. Calibration standards for differential scanning calorimetry (IUPAC technical report). Pure Appl Chem. 2006;78:1455–76. https://doi.org/10.1351/pac200678071455.

    Article  CAS  Google Scholar 

  35. Kaisersberger E, Janoschek J, Wassmer E. A heat flux DSC for enthalpy and specific heat determinations to 1700 K. Thermochim Acta. 1989;148:499–505. https://doi.org/10.1016/0040-6031(89)85253-0.

    Article  Google Scholar 

  36. ASTM E1269-11. Standard test method for determining specific heat capacity by differential scanning calorimetry. West Conshohocken: ASTM International; 2018. https://astm.org/Standards/E1269.htm. Accessed 24 June 2019.

  37. ISO 11357-4:2014. Plastics—differential scanning calorimetry (DSC)—part 4: determination of specific heat capacity. Geneva: International Organization for Standardization; 2014. https://iso.org/standard/65087.html. Accessed 24 June 2019.

  38. Adam G, Gibbs JH. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys. 1965;43:139–46. https://doi.org/10.1063/1.1696442.

    Article  CAS  Google Scholar 

  39. Kauzmann W. The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev. 1948;43:219–56. https://doi.org/10.1021/cr60135a002.

    Article  CAS  Google Scholar 

  40. Bestul AB, Chang SS. Excess entropy at glass transformation. J Chem Phys. 1964;40:3731–3. https://doi.org/10.1063/1.1725086.

    Article  CAS  Google Scholar 

  41. Wooley KL, Hawker CJ, Pochan JM, Fréchet JMJ. Physical properties of dendritic macromolecules: a study of glass transition temperature. Macromolecules. 1993;26:1514–9. https://doi.org/10.1021/ma00059a006.

    Article  CAS  Google Scholar 

  42. Debye P. Zur Theorie der spezifischen Wärmen. Ann Phys. 1912;344:789–839. https://doi.org/10.1002/andp.19123441404.

    Article  Google Scholar 

  43. McCullough JP, Scott DW. Experimental thermodynamics. Volume I. Calorimetry of non-reacting systems. London: Butterworth & Co., Ltd.; 1968.

    Google Scholar 

  44. Chase MW Jr. NIST-JANAF thermochemical tables. 4th ed. J Phys Chem Ref Data, Monograph No. 9. 1998;1–1951.

Download references

Acknowledgements

This work was performed with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Contract No. 4.5706.2017/8.9), the Russian Foundation for Basic Research (Project No. 19-03-00248), and the Russian Science Foundation (Project No. 18-13-00411).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey V. Markin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sologubov, S.S., Markin, A.V., Sarmini, Y.A. et al. Calorimetric study of siloxane dendrimer of the third generation with trimethylsilyl terminal groups. J Therm Anal Calorim 138, 3301–3310 (2019). https://doi.org/10.1007/s10973-019-08693-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08693-9

Keywords

Navigation