Skip to main content
Log in

Simultaneous determination of the partial vapor pressures for a binary mixture of ferrocene and benzoic acid using UV/Vis absorbance spectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Determining the vapor pressure of the individual components within a mixture is extremely challenging. Herein, a commercial UV/Vis absorbance spectrometer is used for the direct and simultaneous determination of the vapor pressures and the enthalpies of sublimation of a binary mixture of benzoic acid and ferrocene. In accordance with the Beer–Lambert law, the total absorbance in a series of overlapping isothermal absorbance spectra, in the temperature range of 323.15–373.15 K, is related to the number of vapor molecules at each temperature relative to their predetermined absorbance cross sections. Each component is assumed to behave as an ideal gas whose partial pressure contributions are approximated from Dalton’s law of partial pressures. All results for the vapor pressures and enthalpies are in good agreement (< 5%) with their respective literature values. Furthermore, the methodology presented allows for a significant reduction in the total experimental collection times relative to other standard techniques as well as being mostly independent of errors associated with sample purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kumar P, Morawska L, Martani C, Biskos G, Neophytou M, Di Sabatino S, Bell M, Norford L, Britter R. The rise of low-cost sensing for managing air pollution in cities. Environ Int. 2015;75:199–205.

    PubMed  Google Scholar 

  2. Mackay D, Bobra A, Chan DW, Shlu WY. Vapor pressure correlations for low-volatility environmental chemicals. Environ Sci Technol. 1982;16:645–9.

    CAS  Google Scholar 

  3. Pinheiro HM, Touraud E, Thomas O. Aromatic amines from azo dye reduction: status review with emphasis on direct UV spectrophotometric detection in textile industry wastewaters. Dye Pigment. 2004;61:121–39.

    CAS  Google Scholar 

  4. Gavrilescu M, Demnerová K, Aamand J, Agathos S, Fava F. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. N Biotechnol. 2015;32:147–56.

    CAS  PubMed  Google Scholar 

  5. Mokalled L, Al-husseini M, Kabalan KY, El-hajj A. Sensor review for trace detection of explosives. Int J Sci Eng Res. 2014;5:337–50.

    Google Scholar 

  6. Moore DS. Recent advances in trace explosives detection instrumentation. Sens Imaging. 2007;8:9–38.

    Google Scholar 

  7. Caygill JS, Davis F, Higson SPJ. Current trends in explosive detection techniques. Talanta. 2012;88:14–29.

    CAS  PubMed  Google Scholar 

  8. Bielecki Z, Janucki J, Kawalec A, Mikołajczyk J, Pałka N, Pasternak M, Pustelny T, Stacewicz T, Wojtas J. Sensors and systems for the detection of explosive devices: an overview. Metrol Meas Syst. 2012;19:3–28.

    Google Scholar 

  9. López-López M, García-Ruiz C. Infrared and Raman spectroscopy techniques applied to identification of explosives. Trends Anal Chem. 2014;54:36–44.

    Google Scholar 

  10. Lyons LE, Morris GC. The absorption spectrum of anthracene vapor from 36,000 to 66,000 cm−1. J Mol Spectrosc. 1960;4:480–7.

    CAS  Google Scholar 

  11. King GW, Moule D. The ultraviolet absorption spectrum of nitrous acid in the vapor state. J Photochem. 1976;6:23–34.

    Google Scholar 

  12. Wallington TJ, Dagaut P, Kurylo MJ. UV absorption cross sections and reaction kinetics and mechanisms for peroxy radicals in the gas phase. Chem Rev. 1992;92:667–710.

    CAS  Google Scholar 

  13. Vaghjiani GL. Ultraviolet absorption cross sections for N2H4 vapor between 191–291 nm and H(2S) quantum yield in 248 nm photodissociation at 296 K. J Chem Phys. 1993;98:2123–31.

    CAS  Google Scholar 

  14. Usachev A, Miller T, Singh J. Optical properties of gaseous 2,4,6-trinitrotoluene in the ultraviolet region. Appl Spectrosc. 2001;55:125–9.

    CAS  Google Scholar 

  15. Morris GC. The intensity of absorption of naphthacene vapor from 20,000 to 54,000 cm−1. J Mol Spectrosc. 1965;18:42–50.

    CAS  Google Scholar 

  16. Back RA, Willis C, Ramsay DA. The near-ultraviolet absorption spectrum of diimide. Can J Chem. 1974;52:1006–12.

    CAS  Google Scholar 

  17. Maya J. Ultraviolet absorption cross sections of HgI2, HgBr2, and tin (II) halide vapors. J Chem Phys. 1977;67:4976–80.

    CAS  Google Scholar 

  18. Dygdała RS, Stefański K. Absorption investigation of anthracene vapour. Chem Phys. 1980;53:51–62.

    Google Scholar 

  19. Molina T, Molina J. UV absorption cross sections of HO2NO2 Vapor. J Photochem. 1981;6:97–108.

    Google Scholar 

  20. Platt U, Perner D. Measurements of atmospheric trace gases by long path differential UV/visible absorption spectroscopy. Opt Laser Remote Sens. 1983;39:97–105.

    CAS  Google Scholar 

  21. Roberts JM, Fajer RW. UV absorption cross sections of organic nitrates of potential atmospheric importance and estimation of atmospheric lifetimes. Environ Sci Technol. 1989;23:945–51.

    CAS  Google Scholar 

  22. Daumont D, Brion J, Charbonnier J, Malicet J. Ozone UV spectroscopy I: absorption cross-sections at room temperature. J Atmos Chem. 1992;15:145–55.

    CAS  Google Scholar 

  23. Wang C, Luo H, Li H, Dai S. Direct UV-spectroscopic measurement of selected ionic-liquid vapors. Phys Chem Chem Phys. 2010;12:7246–50.

    CAS  PubMed  Google Scholar 

  24. Rice PA, Ragone DV. Measurement of enthalpies of evaporation of Bi and Bi2 by an optical absorption technique. J Chem Phys. 1966;45:4141–5.

    CAS  Google Scholar 

  25. Rice PA, Ragone DV. Simultaneous determination of f values and vapor pressures from optical absorption. J Chem Phys. 1965;42:701–8.

    CAS  Google Scholar 

  26. Morrey JR, Carter DG, Gruber JB. Spectrum of gaseous uranium tetrachloride. J Chem Phys. 1967;46:804–9.

    CAS  Google Scholar 

  27. Dai S, Mac Toth L, Del Cul GD, Metcalf DH. Ultraviolet-visible absorption spectrum of C60 vapor and determination of the C60 vaporization enthalpy. J Chem Phys. 1994;101:4470–1.

    CAS  Google Scholar 

  28. Hikal WM, Weeks BL. Spectroscopic determination of enthalpies of sublimation of organic materials in the vapor phase: benzoic acid, ferrocene, and naphthalene. Chem Phys. 2013;415:228–31.

    CAS  Google Scholar 

  29. Hikal WM, Weeks BL. In situ direct measurement of vapor pressures and thermodynamic parameters of volatile organic materials in the vapor phase: benzoic acid, ferrocene, and naphthalene. ChemPhysChem. 2013;14:1920–5.

    CAS  PubMed  Google Scholar 

  30. Hikal WM, Weeks BL. Estimating vapor enthalpies of sublimation by rising-temperature absorbance spectroscopy. J Therm Anal Calorim. 2015;122:1055–60.

    CAS  Google Scholar 

  31. Karpov VV. Influence of fluorine-containing substituents on the energy of intermolecular interactions and the heat of evaporation of disperse azo dyes. Dye Pigment. 1984;5:285–93.

    CAS  Google Scholar 

  32. Su CH, Zhu S, Ramachandran N, Burger A. Beer law constants and vapor pressures of HgI2 over HgI2(s,l). J Cryst Growth. 2002;235:313–9.

    CAS  Google Scholar 

  33. Chassot P, Emmenegger F. The complex of Co(2,2,6,6-tetramethyl-3,5-heptanedionate)2 with 2,2′-bipyridine: its formation in the gas phase and in solution. Inorg Chem. 1996;35:5931–4.

    Google Scholar 

  34. Hodyss R, Beauchamp JL. Multidimensional detection of nitroorganic explosives by gas chromatography-pyrolysis-ultraviolet detection. Anal Chem. 2005;77:3607–10.

    CAS  PubMed  Google Scholar 

  35. Dubroca T, Vishwanathan K, Hummel RE. The limit of detection for explosives in spectroscopic differential reflectometry. In: Proceedings of SPIE 8018, Chemical, biological, radiological, nuclear, and explosives sensing XII, vol. 80181L1-7, 2011.

  36. Cooper R, Zolot AM, Boatz JA, Sporleder DP, Stearns JA. IR and UV spectroscopy of vapor-phase jet-cooled ionic liquid [emim] +[Tf2N]-: ion pair structure and photodissociation dynamics. J Phys Chem A. 2013;117:12419–28.

    CAS  PubMed  Google Scholar 

  37. Alrefae M, Es-Sebbar ET, Farooq A. Absorption cross-section measurements of methane, ethane, ethylene and methanol at high temperatures. J Mol Spectrosc. 2014;303:8–14.

    CAS  Google Scholar 

  38. Es-Sebbar ET, Benilan Y, Farooq A. Temperature-dependent absorption cross-section measurements of 1-butene (1-C4H8) in VUV and IR. J Quant Spectrosc Radiat Transf. 2013;115:1–12.

    CAS  Google Scholar 

  39. Godin PJ, Cabaj A, Conway S, Hong AC, Le Bris K, Mabury SA, Strong K. Temperature-dependent absorption cross-sections of perfluorotributylamine. J Mol Spectrosc. 2016;323:53–8.

    CAS  Google Scholar 

  40. Doizi D, Dauvois V, Roujou JL, Delanne V, Fauvet P, Larousse B, Hercher O, Carles P, Moulin C, Hartmann JM. Total and partial pressure measurements for the sulphur-iodine thermochemical cycle. Int J Hydrog Energy. 2007;32:1183–91.

    CAS  Google Scholar 

  41. Harper RJ, Almirall JR, Furton KG. Identification of dominant odor chemicals emanating from explosives for use in developing optimal training aid combinations and mimics for canine detection. Talanta. 2005;67:313–27.

    CAS  PubMed  Google Scholar 

  42. Edwards G. The vapor pressure of 2:4:6-trinitrotoluene. Trans Faraday Soc. 1950;46:423–7.

    CAS  Google Scholar 

  43. Crimmins FT. The vapor pressure of pentaerythritol tetranitrate (PETN) in the temperature range of 50 to 98 degrees centigrade. Rep UCRL-50704, Lawrence Livermore Natl Lab (LLNL), Livermore, CA, 1969.

  44. Ribeiro da Silva MAV, Monte MJS, Santos LMNBF. The design, construction, and testing of a new Knudsen effusion apparatus. J Chem Thermodyn. 2006;38:778–87.

    CAS  Google Scholar 

  45. Mishra R, Bharadwaj SR, Das D. Determination of thermodynamic stability of CdMoO4 by Knudsen effusion vapor pressure measurement method. J Therm Anal Calorim. 2006;86:547–52.

    CAS  Google Scholar 

  46. Monte MJS, Almeida ARRP, Notario R. Volatility and chemical stability of chromium, molybdenum, and tungsten hexacarbonyls. J Therm Anal Calorim. 2018;132:1201–11.

    CAS  Google Scholar 

  47. Lenchitz C, Velicky RW. Vapor pressure and heat of sublimation of three nitrotoluenes. J Chem Eng Data. 1970;15:401–3.

    CAS  Google Scholar 

  48. Cundall RB, Palmer TF, Wood CE. Vapor pressure measurements on some organic high explosives. J Chem Soc Faraday Trans I. 1978;74:1339–45.

    CAS  Google Scholar 

  49. Pelino M, Tomassetti M, Piacente V, D’Ascenzo G. Vapor pressure measurements of ferrocene, mono-and, 1,1′-di-acetyl ferrocene. Thermochim Acta. 1981;44:89–99.

    CAS  Google Scholar 

  50. Colomina M, Jimenez P, Turrion C. Vapour pressures and enthalpies of sublimation of naphthalene and benzoic acid. J Chem Thermodyn. 1982;14:779–84.

    CAS  Google Scholar 

  51. Torres-Gómez LA, Barreiro-Rodríguez G, Méndez-Ruíz F. Vapour pressures and enthalpies of sublimation of ferrocene, cobaltocene and nickelocene. Thermochim Acta. 1988;124:179–83.

    Google Scholar 

  52. Konieczny J, Botor J. The application of a thermobalance for determining the vapour pressure and thermodynamic properties. J Therm Anal Calorim. 1990;36:2015–9.

    CAS  Google Scholar 

  53. Boller A, Wiedemann HG. Vapor pressure determination by pressure DSC. J Therm Anal Calorim. 1998;53:431–9.

    CAS  Google Scholar 

  54. Ribeiro da Silva MAV, Monte MJS, Ribeiro JR. Thermodynamic study on the sublimation of succinic acid and of methyl- and dimethyl- substituted succinic and glutaric acids. J Chem Thermodyn. 2001;33:23–31.

    CAS  Google Scholar 

  55. de Kruif CG, Oonik HAJ. The determination of enthalpies of sublimation by means of thermal conductivity manometers. Chem Ing Tech. 1973;45:455–61.

    Google Scholar 

  56. de Kruif CG, Kuipers T, van Miltenburg JC, Schaake RCF, Stevens G. The vapour pressure of solid and liquid naphthalene. J Chem Thermodyn. 1981;13:1081–6.

    Google Scholar 

  57. de Kruif CG, Blok JG. The vapour pressure of benzoic acid. J Chem Thermodyn. 1982;14:201–6.

    Google Scholar 

  58. Jacobs MHG, Van Ekeren PJ, de Kruif CG. The vapour pressure and enthalpy of sublimation of ferrocene. J Chem Thermodyn. 1983;15:619–23.

    CAS  Google Scholar 

  59. Fulem M, Růžička K, Červinka C, Rocha MAA, Santos LMNBF, Berg RF. Recommended vapor pressure and thermophysical data for ferrocene. J Chem Thermodyn. 2013;57:530–40.

    CAS  Google Scholar 

  60. Monte MJS, Santos LMNBF, Fulem M, Fonseca JMS, Sousa CAD. New static apparatus and vapor pressure of reference materials: naphthalene, benzoic acid, benzophenone, and ferrocene. J Chem Eng Data. 2006;51:757–66.

    CAS  Google Scholar 

  61. Zhang P, Liang J, Wang J. Equivalent analysis of the explosion overpressure of gasoline vapor–air mixture by using isooctane equivalence ratio. J Therm Anal Calorim. 2019;137:1775–81.

    CAS  Google Scholar 

  62. Pelino M, Gigli R, Tomasetti M. Thermodynamic properties of benzoylferrocene and 1,1′-dibenzoylferrocene. Thermochim Acta. 1983;61:301–5.

    CAS  Google Scholar 

  63. Kelley JD, Rice FO. The vapor pressures of some polynuclear aromatic hydrocarbons. J Phys Chem. 1964;68:3794–6.

    CAS  Google Scholar 

  64. Verhoek FH, Marshall AL. Vapor pressures and accommodation coefficients of four non-volatile compounds. The vapor pressure of Tri-m-cresyl phosphate over polyvinyl chloride plastics. J Am Chem Soc. 1939;61:2737–42.

    Google Scholar 

  65. Edwards JL, Johnson DP. A dynamic method for determining the vapor pressure of carbon dioxide at 0. J Res Natl Bur Stand C Eng Instrum. 1968;72:27–32.

    CAS  Google Scholar 

  66. Wang W, Wu F, Yu Q, Jin H. Interfacial liquid–vapor phase change and entropy generation in pool boiling experiment for titanium tetrachloride. J Therm Anal Calorim. 2018;133:1571–8.

    CAS  Google Scholar 

  67. Pashchenko LL, Druzhinina AI. Enthalpy of vaporization measurements by calorimetric techniques: saturated vapor pressures of perfluorooctylbromide. J Therm Anal Calorim. 2018;133:1173–9.

    CAS  Google Scholar 

  68. Varushchenko RM, Druzhinina AI, Kuramshina GM, Dorofeeva OV. Thermodynamics of vaporization of some freons and halogenated ethanes and propanes. Fluid Phase Equilib. 2007;256:112–22.

    CAS  Google Scholar 

  69. Ambrose D. Improved boilers for the ebulliometric determination of vapour pressures. J Phys E. 1968;1:41–4.

    CAS  Google Scholar 

  70. Ambrose D, Sprake CHS. Thermodynamic properties of organic oxygen compounds XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols. J Chem Thermodyn. 1970;2:631–45.

    CAS  Google Scholar 

  71. Ambrose D, Ellender JH, Sprake CHS. Thermodynamic properties of organic oxygen compounds XXXV. Vapour pressures of aliphatic alcohols. J Chem Thermodyn. 1974;6:909–14.

    CAS  Google Scholar 

  72. Hales JL, Cogman RC, Frith WJ. A transpiration-g.l.c. apparatus for measurement of low vapour concentration. J Chem Thermodyn. 1981;13:591–601.

    CAS  Google Scholar 

  73. Zielenkiewicz X, Perlovich GL, Wszelaka-Rylik M. The vapour pressure and the enthalpy of sublimation. Determination by inert gas flow method. J Therm Anal Calorim. 1999;57:225–34.

    CAS  Google Scholar 

  74. Blokhina S, Sharapova A, Ol’khovich M, Volkova T, Perlovich G. Vapor pressures and thermodynamic sublimation of antitubercular drugs: pyrazinamide and hydrazides isonicotinic acid. J Therm Anal Calorim. 2015;120:1053–60.

    CAS  Google Scholar 

  75. Vikulova ES, Cherkasov SA, Nikolaeva NS, Smolentsev AI, Sysoev SV, Morozova NB. Thermal behavior of volatile palladium(II) complexes with tetradentate Schiff bases containing propylene-diimine bridge. J Therm Anal Calorim. 2019;135:2573–82.

    CAS  Google Scholar 

  76. Shushanyan AD, Nikolaeva NS, Vikulova ES, Zelenina LN, Trubin SV, Sysoev SV, Dorovskikh SI, Morozova NB. Thermochemical study of new volatile palladium(II) and copper(II) β-ketohydrazonates for CVD application. J Therm Anal Calorim. 2019;136:2341–52.

    CAS  Google Scholar 

  77. Mukherjee S, Dawar R, Phapale S, Dash S, Mishra R. Thermodynamic stability of CaThF6(cr) by transpiration and e.m.f. techniques. J Therm Anal Calorim. 2019;137:667–77.

    CAS  Google Scholar 

  78. Karakovskaya KI, Vikulova ES, Ilyin IY, Piryazev DA, Sysoev SV, Morozova NB. Synthesis, structure and thermal investigation of a new volatile iridium (I) complex with cyclooctadiene and methoxy-substituted β-diketonate. J Therm Anal Calorim. 2019;137:931–940.

    CAS  Google Scholar 

  79. Kulikov D, Verevkin SP, Heintz A. Enthalpies of vaporization of a series of aliphatic alcohols: experimental results and values predicted by the ERAS-model. Fluid Phase Equilib. 2001;192:187–207.

    CAS  Google Scholar 

  80. Verevkin SP, Krasnykh EL, Koutek B, Doubsky J. Vapour pressures and enthalpies of vaporization of a series of the linear aliphatic aldehydes. Fluid Phase Equilib. 2003;206:331–9.

    CAS  Google Scholar 

  81. Verevkin SP. Determination of vapor pressures and enthalpies of vaporization of 1,2-alkanediols. Fluid Phase Equilib. 2004;224:23–9.

    CAS  Google Scholar 

  82. Verevkin SP. Vapour pressures and enthalpies of vaporization of a series of the linear n-alkyl-benzenes. J Chem Thermodyn. 2006;38:1111–23.

    CAS  Google Scholar 

  83. Emel’yanenko VN, Verevkin SP, Krol Olesya V, Varuschchenko RM, Chelovskaya NV. Vapour pressures and enthalpies of sublimation of a series of the ferrocene derivatives. Fluid Phase Equilib. 2007;39:594–601.

    Google Scholar 

  84. Emel’yanenko VN, Verevkin SP, Heintz A. The gaseous enthalpy of formation of the ionic liquid 1-butyl-3-methylimidazolium dicyanamide from combustion calorimetry, vapor pressure measurements, and ab initio calculations. J Am Chem Soc. 2007;129:3930–7.

    PubMed  Google Scholar 

  85. Zharkova GI, Sysoev SV, Stabnikov PA, Logvinenko VA, Igumenov IK. Vapor pressure and crystal lattice energy of volatile palladium(II) β-iminoketonates. J Therm Anal Calorim. 2011;103:381–5.

    CAS  Google Scholar 

  86. Volkova TV, Blokhina SV, Ryzhakov AM, Sharapova AV, Ol’Khovich MV, Perlovich GL. Vapor pressure and sublimation thermodynamics of aminobenzoic acid, nicotinic acid, and related amido-derivatives. J Therm Anal Calorim. 2016;123:841–9.

    CAS  Google Scholar 

  87. Pella PA. Generator for producing trace vapor concentrations of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and ethylene glycol dinitrate for calibrating explosives vapor detectors. Anal Chem. 1976;48:1632–7.

    CAS  Google Scholar 

  88. Pella PA. Measurement of the vapor pressures of TNT, 2,4-DNT, 2,6-DNT, and EGDN. J Chem Thermodyn. 1977;9:301–5.

    CAS  Google Scholar 

  89. Griesser UJ, Szelagiewicz M, Hofmeier UC, Pitt C, Cianferani S. Vapor pressure and heat of sublimation of crystal polymorphs. J Therm Anal Calorim. 1999;57:45–60.

    CAS  Google Scholar 

  90. Oxley JC, Smith JL, Shinde K, Moran J. Determination of the vapor density of triacetone triperoxide (TATP) using a gas chromatography headspace technique. Propellants Explos Pyrotech. 2005;30:127–30.

    CAS  Google Scholar 

  91. Oxley JC, Smith JL, Luo W, Brady J. Determining the vapor pressures of diacetone diperoxide (DADP) and hexamethylene triperoxide diamine (HMTD). Propellants Explos Pyrotech. 2009;34:539–43.

    CAS  Google Scholar 

  92. Lemoine B, Li Y, Cadours R, Bouallou C, Richon D. Partial vapor pressure of CO2 and H2S over aqueous methyldiethanolamine solutions. Fluid Phase Equilib. 2000;172:261–77.

    CAS  Google Scholar 

  93. Mirskaya V, Ibavov NV, Nazarevich D. Phase transitions in binary system of n-heptane + water. J Therm Anal Calorim. 2018;133:1109–13.

    CAS  Google Scholar 

  94. Kiyobayashi T, Minas da Piedade ME. The standard molar enthalpy of sublimation of η 5-bis-pentamethylcyclopentadienyl iron measured with an electrically calibrated vacuum-drop sublimation microcalorimetric apparatus. J Chem Thermodyn. 2001;33:11–21.

    CAS  Google Scholar 

  95. Santos LMNBF, Schröder B, Fernandes OOP, Ribeiro Da Silva MAV. Measurement of enthalpies of sublimation by drop method in a Calvet type calorimeter: design and test of a new system. Thermochim Acta. 2004;415:15–20.

    CAS  Google Scholar 

  96. Torres-Gómez LA, Barreiro-Rodríguez G, Galarza-Mondragón A. A new method for the measurement of enthalpies of sublimation using differential scanning calorimetry. Thermochim Acta. 1988;124:229–33.

    Google Scholar 

  97. Beech G, Lintonbon RM. The measurement of sublimation enthalpies by differential calorimetry scanning. Thermochim Acta. 1971;2:86–8.

    CAS  Google Scholar 

  98. Holdiness MR. Measurement of heats of sublimation of some ortho-substituted benzoic acids by differential scanning calorimetry. Thermochim Acta. 1983;68:375–7.

    CAS  Google Scholar 

  99. Murray JP, Cavell KJ, Hill JO. A DSC study of benzoic acid: a suggested calibrant compound. Thermochim Acta. 1980;36:97–101.

    CAS  Google Scholar 

  100. Rojas-Aguilar A, Orozco-Guarẽno E, Martínez-Herrera M. An experimental system for measurement of enthalpies of sublimation by d.s.c. J Chem Thermodyn. 2001;33:1405–18.

    CAS  Google Scholar 

  101. Astra HL, Oja V. Vapour pressure data for 2-n-propylresorcinol, 4-ethylresorcinol and 4-hexylresorcinol near their normal boiling points measured by differential scanning calorimetry. J Chem Thermodyn. 2019;134:119–26.

    CAS  Google Scholar 

  102. Matricarde Falleiro RM, Akisawa Silva LY, Meirelles AJA, Krähenbühl MA. Vapor pressure data for fatty acids obtained using an adaptation of the DSC technique. Thermochim Acta. 2012;547:6–12.

    CAS  Google Scholar 

  103. Matricarde Falleiro RM, Meirelles AJA, Krähenbühl MA. Experimental determination of the (vapor + liquid) equilibrium data of binary mixtures of fatty acids by differential scanning calorimetry. J Chem Thermodyn. 2010;42:70–7.

    CAS  Google Scholar 

  104. Siitsman C, Kamenev I, Oja V. Vapor pressure data of nicotine, anabasine and cotinine using differential scanning calorimetry. Thermochim Acta. 2014;595:35–42.

    CAS  Google Scholar 

  105. Rojas A, Vieyra-Eusebio MT. Enthalpies of sublimation of ferrocene and nickelocene measured by calorimetry and the method of Langmuir. J Chem Thermodyn. 2011;43:1738–47.

    CAS  Google Scholar 

  106. Cunico LP, Damaceno DS, Matricarde Falleiro RM, Sarup B, Abildskov J, Ceriani R, Gani R. Vapour liquid equilibria of monocaprylin plus palmitic acid or methyl stearate at P = (1.20 and 2.50) kPa by using DSC technique. J Chem Thermodyn. 2015;91:108–15.

    CAS  Google Scholar 

  107. Khoshooei MA, Sharp D, Maham Y, Afacan A, Dechaine GP. A new analysis method for improving collection of vapor-liquid equilibrium (VLE) data of binary mixtures using differential scanning calorimetry (DSC). Thermochim Acta. 2018;659:232–41.

    CAS  Google Scholar 

  108. Akisawa Silva LY, Matricarde Falleiro RM, Meirelles AJA, Krähenbühl MA. Vapor-liquid equilibrium of fatty acid ethyl esters determined using DSC. Thermochim Acta. 2011;512:178–82.

    CAS  Google Scholar 

  109. Goodrum J, Geller D, Lee S. Rapid measurement of boiling points and vapor pressure of binary mixtures of short-chain triglycerides by TGA method. Thermochim Acta. 1998;311:71–9.

    CAS  Google Scholar 

  110. Goodrum JW, Siesel EM. Thermogravimetric analysis for boiling points and vapour pressure. J Therm Anal Calorim. 1996;46:1251–8.

    CAS  Google Scholar 

  111. Liu R, Zhang T, Liu Y, Yang L, Zhou Z. Vaporation characteristics of low-melting nitrocompounds by isothermal thermogravimetry. J Therm Anal Calorim. 2013;112:1523–32.

    CAS  Google Scholar 

  112. Mbah J, Knott D, Steward S. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization. Talanta. 2014;129:586–93.

    CAS  PubMed  Google Scholar 

  113. Duce C, Vecchio SC, Spepi A, Bernazzani L, Tinè MR. Vaporization kinetic study of lavender and sage essential oils. J Therm Anal Calorim. 2017;130:595–604.

    CAS  Google Scholar 

  114. Babinski P, Sciazko M, Ksepko E. Limitation of thermogravimetry for oxy-combustion analysis of coal chars. J Therm Anal Calorim. 2018;133:713–25.

    CAS  Google Scholar 

  115. Mendoza-Ruiz EA, Mentado-Morales J, Flores-Segura H. Standard molar enthalpies of formation and phase changes of Tetra-N-phenylbenzidine and 4,4′-Bis (N-carbazolyl)-1,1′-biphenyl. J Therm Anal Calorim. 2019;135:2337–45.

    CAS  Google Scholar 

  116. Oxley J, Smith JL, Brady J, Naik S. Determination of urea nitrate and guanidine nitrate vapor pressures by isothermal thermogravimetry. Propellants Explos Pyrotech. 2010;35:278–83.

    CAS  Google Scholar 

  117. Selvakumar J, Raghunathan VS, Nagaraja KS. Vapor pressure measurements of Sc(tmhd)3 and synthesis of stabilized zirconia thin films by hybrid CVD technique using Sc(tmhd)3, Zr(tmhd)4, and Al(acac)3 as precursors. J Phys Chem C. 2009;113:19011–20.

    CAS  Google Scholar 

  118. Elder JP. Sublimation measurements of pharmaceutical compounds by isothermal thermogravimetry. J Therm Anal. 1997;49:897–905.

    CAS  Google Scholar 

  119. Vieyra-Eusebio MT, Rojas A. Vapor pressures and sublimation enthalpies of nickelocene and cobaltocene measured by thermogravimetry. J Chem Eng Data. 2011;56:5008–18.

    CAS  Google Scholar 

  120. Dollimore D, Evans TA, Lee YF, Wilburn FW. Correlation between the shape of a TG/DTG curve and the form of the kinetic mechanism which is applying. Thermochim Acta. 1992;198:249–57.

    CAS  Google Scholar 

  121. Price DM, Hawkins M. Calorimetry of two disperse dyes using thermogravimetry. Thermochim Acta. 1998;315:19–24.

    CAS  Google Scholar 

  122. Price DM. Volatilisation, evaporation and vapour pressure studies using a thermobalance. J Therm Anal Calorim. 2001;64:315–22.

    CAS  Google Scholar 

  123. Chatterjee K, Dollimore D, Alexander KS. A new application for the Antoine equation in formulation development. Int J Pharm. 2001;213:31–44.

    CAS  PubMed  Google Scholar 

  124. Chatterjee K, Dollimore D, Alexander KS. Calculation of vapor pressure curves for hydroxy benzoic acid derivatives using thermogravimetry. Thermochim Acta. 2002;392:107–17.

    Google Scholar 

  125. Hazra A, Dollimore D, Alexander KS. Thermal analysis of the evaporation of compounds used in aromatherapy using thermogravimetry. Thermochim Acta. 2002;392:221–9.

    Google Scholar 

  126. Bhattacharia SK, Maiti A, Gee RH, Weeks BL. Sublimation properties of pentaerythritol tetranitrate single crystals doped with its homologs. Propellants Explos Pyrotech. 2012;37:563–8.

    CAS  Google Scholar 

  127. Gomes APB, Freire FD, Aragão CFS. Determination of vapor pressure curves of warifteine and methylwarifteine by using thermogravimetry. J Therm Anal Calorim. 2012;108:249–52.

    CAS  Google Scholar 

  128. Niskanen A, Hatanpää T, Ritala M, Leskelä M. Thermogravimetric study of volatile precursors for chemical thin film deposition. Estimation of vapor pressures and source temperatures. J Therm Anal Calorim. 2001;64:955–64.

    CAS  Google Scholar 

  129. Dawar R, Pankajavalli R, Joseph J, Anthonysamy S, Ganesan V. Thermodynamic characterization of chromium tellurate. J Therm Anal Calorim. 2013;112:95–102.

    CAS  Google Scholar 

  130. Pankajavalli R, Jain A, Babu R, Anthonysamy S, Ananthasivan K, Ganesan V, Nagarajan K. Thermodynamic studies on S–Te–O system. J Therm Anal Calorim. 2013;111:109–16.

    Google Scholar 

  131. Pankajavalli R, Jain A, Sharma A, Anthonysamy S, Ganesan V. Thermodynamic investigation on M–Te–O (M = Sc, Y) system. J Therm Anal Calorim. 2013;112:83–93.

    CAS  Google Scholar 

  132. Jain A, Pankajavalli R, Babu R, Anthonysamy S. Thermodynamic studies on the systems M–Te–O (M = Nd, Sm). J Therm Anal Calorim. 2014;115:1279–87.

    CAS  Google Scholar 

  133. Slager TL, Prozonic FM. Simple methods for calibrating IR in TGA/IR analyses. Thermochim Acta. 2005;426:93–9.

    CAS  Google Scholar 

  134. Wu M, Shi L, Mi J. Preparation and desulfurization kinetics of activated carbons from semi-coke of coal liquefaction residual. J Therm Anal Calorim. 2017;129:1593–603.

    CAS  Google Scholar 

  135. Saraji-Bozorgzad MR, Streibel T, Kaisersberger E, Denner T, Zimmermann R. Detection of organic products of polymer pyrolysis by thermogravimetry- supersonic jet-skimmer time-of-flight mass spectrometry (TG-Skimmer-SPI-TOFMS) using an electron beam pumped rare gas excimer VUV-light source (EBEL) for soft photo ionisation. J Therm Anal Calorim. 2011;105:691–7.

    CAS  Google Scholar 

  136. Varga J, Wohlfahrt S, Fischer M, Saraji-Bozorgzad MR, Matuschek G, Denner T, Reller A, Zimmermann R. An evolved gas analysis method for the characterization of sulfur vapor. J Therm Anal Calorim. 2017;127:955–60.

    CAS  Google Scholar 

  137. Huang JY-K, Gilles PW. Kinetics of vaporization of molten selenium. High Temp Sci. 1984;17:109–34.

    CAS  Google Scholar 

  138. Morozova NB, Semyannikov PP, Sysoev SV, Grankin VM, Igumenov IK. Saturated vapor pressure of iridium(III) acetylacetonate. J Therm Anal Calorim. 2000;60:489–95.

    CAS  Google Scholar 

  139. Morozova NB, Semyannikov PP, Trubin SV, Stabnikov PP, Bessonov AA, Zherikova KV, Igumenov IK. Vapor pressure of some volatile iridium(I) compounds with carbonyl, acetylacetonate and cyclopentadienyl ligands. J Therm Anal Calorim. 2009;96:261–6.

    CAS  Google Scholar 

  140. Morozova NB, Zherikova KV, Semyannikov PP, Trubin SV, Igumenov IK. Study of temperature dependencies of saturated vapor pressure of ruthenium(III) beta-diketonate derivatives. J Therm Anal Calorim. 2009;98:395–9.

    CAS  Google Scholar 

  141. Narasimhan TSL, Balasubramanian R, Manikandan P, Viswanathan R. A vaporization study of the Ru–Te binary system by Knudsen effusion mass spectrometry. J Alloys Compd. 2013;581:435–45.

    Google Scholar 

  142. Viswanathan R, Balasubramanian R, Raj DDA, Baba MS, Narasimhan TSL. Vaporization studies on elemental tellurium and selenium by Knudsen effusion mass spectrometry. J Alloys Compd. 2014;603:75–85.

    CAS  Google Scholar 

  143. Jacobson NS, Hurowitz JA, Farley KA, Asimow PD, Cartwright JA. Novel applications of Knudsen effusion mass spectrometry. Electrochem Soc Trans. 2013;58:3–12.

    Google Scholar 

  144. Igaki K, Nakano M. Measurement of partial pressures over CdSe and CdTe by an optical absorption method. Trans Jpn Inst Met. 1979;20:597–602.

    CAS  Google Scholar 

  145. Brebrick RF. Si–Te system: partial pressures of Te2 and SiTe and thermodynamic properties from optical density of the vapor phase. J Chem Phys. 1968;49:2584–91.

    CAS  Google Scholar 

  146. Brebrick RF. Partial pressure of Se2(g) in selenium vapor. J Chem Phys. 1968;48:5741–3.

    CAS  Google Scholar 

  147. Brebrick RF. Partial pressure of Se2 and optical density of selenium vapor in the visible and ultraviolet. J Chem Phys. 1965;43:3031–6.

    CAS  Google Scholar 

  148. Brebrick RF, Su C. Partial pressures for several In-Se compositions from optical absorbance of the vapor. J Phase Equilib. 2002;23:397–408.

    CAS  Google Scholar 

  149. Ingle JD, Crouch SR. Spectrochemical analysis. Upper Saddle River: Prentice Hall, Inc.; 1988.

    Google Scholar 

  150. Dai S. Correct regression formula used in determination of vaporization enthalpy of pure liquids by UV-Visible spectroscopy. J Chem Educ. 1996;73:122.

    CAS  Google Scholar 

  151. Murata S, Sakiyama M, Seki S. Enthalpy of sublimation of benzoic acid and dimerization in the vapor phase in the temperature range from 320 to 370 K. J Chem Thermodyn. 1982;14:723–31.

    CAS  Google Scholar 

  152. Calis-Van Ginkel CHD, Calis GHM, Timmermans CWM, de Kruif CG, Oonk HAJ. Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic, and butanoic acids. J Chem Thermodyn. 1978;10:1083–8.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Office of Naval Research under Project Number N00014-06-1-0922. Partial support is credited to the John R. Bradford Endowment at Texas Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon L. Weeks.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 587 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fondren, Z.T., Hikal, W.M. & Weeks, B.L. Simultaneous determination of the partial vapor pressures for a binary mixture of ferrocene and benzoic acid using UV/Vis absorbance spectroscopy. J Therm Anal Calorim 139, 3297–3307 (2020). https://doi.org/10.1007/s10973-019-08731-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08731-6

Keywords

Navigation