Skip to main content
Log in

Synthesis of [Pb(H2O)6][ATZ]·H2O and its impact on potassium nitrate decomposition temperature

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, catalyst formation [Pb(H2O)6][ATZ]·H2O (ATZ = azo tetrazolium anion) was successfully synthesized originally; meanwhile, the single-crystal structure of the compound was cultivated and analyzed by diffraction single-crystal method. The influence of the compound in which [Pb(H2O)6][ATZ]·H2O was used as combustion catalyst on the decomposition temperature of potassium nitrate was studied by TG–DSC. The result proved that [Pb(H2O)6][ATZ]·H2O can effectively reduce the decomposition temperature. In other words, [Pb(H2O)6][ATZ]·H2O can reduce the decomposition temperature of potassium nitrate, so the addition of [Pb(H2O)6][ATZ]·H2O can make potassium nitrate better to be used in the fields of initiating explosive device and fire engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hiskey M, Chavez D. Insensitive high-nitrogen compounds. NTIS No: DE 220012776133.

  2. Son SF, Berghout HL, Bolme CA, et al. Burn rate measurements of HMX, TATB, DHT, DAAF and BTATz. In: Proceedings of the Combustion Institute, Edinburgh, vol. 28; 2000. p. 919–924.

  3. Ali AN, Son SF, Hiskey MA, Nau DL, et al. Novel high nitrogen propellant use in solid fuel micropropulsion. J Propul Power. 2004;20:120–6.

    Article  CAS  Google Scholar 

  4. Chavez D, Hiskey M, Naud DL. High-nitrogen fuels for low-smoke pyrotechnics. J Pyrotech. 1999;10:17–36.

    Google Scholar 

  5. Hiskey M, Chavez D, Naud DL, et al. Low smoke pyrotechnic compositions. US 6312537; 2001.

  6. Khandhadia PS, Burns SP, Williams GK, et al. High gas yield nonazide gas generants. US 6201505; 2001.

  7. Khandhadia PS, Burns SP. Thermally stable nonazide auto motive airbag propellants. US 6306232; 2001.

  8. Holl G, Klatopke TM, Weigand J. Preparation of dihydrazinium compounds of 5,5′-azotetrazolate type, used in propellant, pyrotechnic formulation, rocket fuel or gas-generating composition, involves reacting alkali metal azotetrazole and hydrazinium salt in aqueous medium. DE102005011563-A1; 2005.

  9. Bennett G, Kolleck ML, Bennett JM. Fire in the air. Military Aerospace Technology; 2003. p. 12–31.

  10. Fallis S, Reed R, Lu YCF, et al. Advanced propellant additive development for fire suppressing gas generators. In: Proceedings of Halon options technical working conference; 2000, p. 361–370.

  11. Bates LR, Jenkins JM. Search for new detonants. In: Proceedings of the international conference on research in primary explosives; 1975.

  12. Klapoetke TM, Sabate CM. Nitrogen-rich tetrazolium azotetrazolate salts: a new family of insensitive energetic materials. Chem Mater. 2008;20:1750–63.

    Article  CAS  Google Scholar 

  13. Klapoetke TM, Stierstorfer JW, Andreas U. Nitrogen-rich salts of 1-methyl-5-nitriminotetrazolate: an auspicious class of thermally stable energetic materials. Chem Mater. 2008;20:4519–30.

    Article  CAS  Google Scholar 

  14. Han Z, Yao Q, Zhang Y, et al. 1,1′- Diisopropylideneamino-5,5′-azotetrozole: synthesis and performance. J Therm Anal Calorim. 2015;119:461–9.

    Article  CAS  Google Scholar 

  15. Ghule VD. Computational screening of nitrogen-rich energetic salts based on substituted triazine. J Phys Chem C. 2013;117:16840–9.

    Article  CAS  Google Scholar 

  16. Han Z, Yao Q, Zhang Y, et al. Synthetic process optimization and thermal analysis of 1,1′-diamino-5,5′-azotetrazole. J Therm Anal Calorim. 2015;121:951–7.

    Article  CAS  Google Scholar 

  17. Zhang G, Zhou Z, Zhang T, et al. Advances on energetic catalysts for solid propellant. J Solid Rocket Technol. 2011;3:319–23.

    Google Scholar 

  18. Haifeng H, Zhiming Z. Progress of study on organic anion based energetic salts. Chin J Explos Propellants. 2012;35(3):1–10.

    Google Scholar 

  19. Huang H, Meng Z, Zhou Z, et al. Energetic salts and energetic ionic liquids. Prog Chem. 2009;21(1):152–63.

    CAS  Google Scholar 

  20. Han Z, Zhang Y, Du Z, et al. An environmental-friendly gas generator with low water vapor. J Clean Prod. 2018;199:763–71.

    Article  CAS  Google Scholar 

  21. Han Zhiyue, Jiang Qi, Zhiming Du, et al. 3-Nitro-4-(tetrazol-5-yl) furazan: theoretical calculations, synthesis and performance. RSC Adv. 2018;8(26):14589–96.

    Article  CAS  Google Scholar 

  22. Han Z, Zhang Y, Du Z, et al. The formula design and performance study of gas generators based on 5-aminotetrazole. J Energ Mater. 2018;36(1):61–8.

    Article  CAS  Google Scholar 

  23. Sun Y, Han Z, Du Z, et al. Preparation and performance of environmental friendly Sulphur-Free propellant for fireworks. Appl Therm Eng. 2017;126:987–96.

    Article  CAS  Google Scholar 

  24. Nagayama S, Katoh K, Higashi E, et al. Differential scanning calorimetry analysis of crystal structure transformation in spray-dried particles consisting of ammonium nitrate, potassium nitrate, and a polymer. J Therm Anal Calorim. 2014;118(2):1215–9.

    Article  CAS  Google Scholar 

  25. Nagayama S, Katoh K, Higashi E, et al. Effect of polymer addition amount and type on thermal decomposition behavior of spray-dried particles comprising ammonium nitrate, potassium nitrate, and polymer. J Therm Anal Calorim. 2014;118(2):1221–7.

    Article  CAS  Google Scholar 

  26. Trache D, Maggi F, Palmucci I, et al. Thermal behavior and decomposition kinetics of composite solid propellants in the presence of amide burning rate suppressants. J Therm Anal Calorim. 2018;132:1601–15.

    Article  CAS  Google Scholar 

  27. Rodríguez-Pesina M, García-Domínguez J, García-Hernández F, et al. The thermal decomposition of ammonium perchlorate-aluminum propellants in presence of metallic zinc particles. Mater Sci Appl. 2017;8(06):436–47.

    Google Scholar 

  28. Marinescu M, Zalaru C, Florea M, et al. Thermal behavior of several stable hydrazyl free radicals and of their parent hydrazines. J Therm Anal Calorim. 2014;116(1):259–63.

    Article  CAS  Google Scholar 

  29. Shaosen LIN, Shiguo DU, Yanling LU, et al. Preparation and characterization of a novel inhibitor for propellant. J Ordnance Equip Eng. 2019;40(4):26–9.

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Fundamental Research Funds for the Central Universities, the 111 Project No. G20012017001 and the Key Laboratory of Firefighting and Rescue Technology, the Ministry of Public Security.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyue Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Gong, L., Du, Z. et al. Synthesis of [Pb(H2O)6][ATZ]·H2O and its impact on potassium nitrate decomposition temperature. J Therm Anal Calorim 140, 373–379 (2020). https://doi.org/10.1007/s10973-019-08864-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08864-8

Keywords

Navigation