Skip to main content
Log in

Hybrid conduction, convection and radiation heat transfer simulation in a channel with rectangular cylinder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The innovation of this study is to investigate the combination effect of thermal radiation and convection in the hybrid heat transfer between solid and fluid in a channel. The lattice Boltzmann method based on the D2Q9 scheme has been utilized for modeling fluid and temperature fields. Streamlines, isotherms, vortices and Nusselt numbers along the wall surfaces have been investigated for different Reynolds numbers (Re = 10, Re = 60, Re = 133.3), Peclet numbers (Pe = 7.1, Pe = 42.6, Pe = 94.7), the emission coefficients (ε = 0.3, ε = 0.7, ε = 1), radiation coefficients (RP = 0.010, RP = 0.015, RP = 0.020) and diffusion coefficients (αs = αf, αs = αf/2, αs = 2αf). The mean Nusselt number (Num) fluctuations have been analyzed for different cases to predict optimal levels of effective factors of this simulation in order to maximize and minimize the heat transfer rate. The results show that by increasing the Reynolds number to Re = 133.3, the maximum average Nusselt number can be changed by more than 9.249 time. Also by increasing the thermal diffusion coefficient to αs = 2αf, the minimum average Nusselt number can be changed by less than − 0.687 time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

c i :

Lattice velocity

c s :

Speed of sound

K :

Thermal conductivity (W m−1 K−1)

k b :

Boltzmann constant

qr:

Radiation source term

f i :

Particle density distribution function

\(f_{\text{i}}^{\text{eq}}\) :

Equilibrium particle density distribution function

g i :

Particle energy distribution function

\(g_{\text{i}}^{\text{eq}}\) :

Equilibrium particle energy distribution function

g y :

Gravitational acceleration (m s−2)

L :

Length of channel (m)

Num :

Mean Nusselt number

Nuy :

Local Nusselt number (h.x/k)

Pe:

Peclet number (Re.Pr)

Pr:

Prandtel number (υ/α)

Ra:

Rayleigh number (g.βT.L3/υ.α)

Re:

Reynolds number (u.L/υ)

T h :

Wall temperature (K)

T c :

Internal dimensionless temperature (K)

RP:

Radiation overall parameter

C D :

Drag coefficient

C L :

Lift coefficient

u, v :

Velocity vectors (m s−1)

x, y :

Coordinates (m)

n1, n2 :

Relaxation time constants

α :

Thermal diffusivity (m2 s−1)

µ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

β :

Thermal expansion coefficient (1/K)

τ v :

Relaxation time relating to flow field

τ c :

Relaxation time of temperature field

υ :

Kinematic viscosity (m2 s−1)

θ:

Dimensionless temperature

ΔT :

Temperature difference (K)

i:

Direction of lattice link

t:

Top

b:

Bottom

l:

Left

r:

Right

h:

Hot

D:

Drag

L:

Lift

References

  1. McNamara GR, Zanetti G. Three dimensional lattice Boltzmann simulation of steady and transient finned natural convection problems with evaluation of different forcing and conjugate heat transfer schemes. Comput Math Appl. 2017;74:1362–78.

    Google Scholar 

  2. Wolf-Gladrow DA. Lattice-gas cellular automata and lattice Boltzmann models. 1st ed. Berlin: Springer; 2000.

    Google Scholar 

  3. Alinejad J, Hosseinnejad F. Aerodynamic optimization in the rotor of centrifugal fan using combined laser Doppler anemometry and CFD modeling. World Appl Sci J. 2012;17:1316–23.

    Google Scholar 

  4. Alinejad J, Montazerin N, Samarbakhsh S. Accretion of the efficiency of a forward-curved centrifugal fan by modification of the rotor geometry: computational and experimental study. Int J Fluid Mech Res. 2013;40:469–81.

    Google Scholar 

  5. Esfahani JA, Alinejad J. Lattice Boltzmann simulation of viscous-fluid flow and conjugate heat transfer in a rectangular cavity with a heated moving wall. Thermophys Aeromech. 2013;20:613–20.

    Google Scholar 

  6. Esfahani JA, Alinejad J. Entropy generation of conjugate natural convection in enclosures: the lattice Boltzmann method. J Thermophys Heat Transf. 2013;27:498–505.

    CAS  Google Scholar 

  7. Mezrhab A, Moussaoui MA, Jami M, Naji H, Bouzidi M. Double MRT thermal lattice Boltzmann method for simulating convective flows. Phys Lett A. 2010;374:3499–507.

    CAS  Google Scholar 

  8. He X, Chen S, Doolen GD. A novel thermal model for the lattice Boltzmann method in incompressible limit. J Comput Phys. 1998;146:282–300.

    Google Scholar 

  9. Alinejad J, Fallah K. Taguchi optimization approach for three-dimensional nanofluid natural convection in a transformable enclosure. J Thermophys Heat Transf. 2016;31:211–7.

    Google Scholar 

  10. Fallah K, Gerdroodbary MB, Ghaderi A, Alinejad J. The influence of micro air jets on mixing augmentation of fuel in cavity flameholder at supersonic flow. Aerosp Sci Technol. 2018;76:187–93.

    Google Scholar 

  11. Alinejad J, Esfahani JA. Lattice Boltzmann simulation of EGM and solid particle trajectory due to conjugate natural convection. Transp Phenom Nano Micro Scales. 2016;4:36–43.

    Google Scholar 

  12. Alinejad J, Esfahani JA. Lattice Boltzmann simulation of forced convection over an electronic board with multiple obstacles. Heat Transf Res. 2014;45:241–62.

    Google Scholar 

  13. Alinejad J, Esfahani JA. Taguchi design of three dimensional simulations for optimization of turbulent mixed convection in a cavity. Meccanica. 2017;52:925–38.

    Google Scholar 

  14. Alinejad J, Esfahani JA. Optimization of 3-D natural convection around the isothermal cylinder using Taguchi method. Transp Phenom Nano Micro Scales. 2018;6:49–59.

    Google Scholar 

  15. Alinejad J, Esfahani JA. Numerical stabilization of three-dimensional turbulent natural convection around isothermal cylinder. J Thermophys Heat Transf. 2015;30:94–102.

    Google Scholar 

  16. Wang L, Chen Z, Meng H. Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures. Appl Therm Eng. 2013;54:237–46.

    CAS  Google Scholar 

  17. Brambilla A, Frouzakis C, Mantzaras J, Tomboulides A, Kerkemeier S, Boulouchos K. Detailed transient numerical simulation of H2/air hetero-/homogeneous combustion in platinum-coated channels with conjugate heat transfer. Combust Flame. 2014;161:2692–707.

    CAS  Google Scholar 

  18. Hegde S, Ganasekaran NGN. Conjugate heat transfer studies in a hexagonal micro channel. Procedia Eng. 2015;127:719–26.

    CAS  Google Scholar 

  19. Xia Ch, Fuab J, Laiab J, Yaoab X, Chen Z. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling. Appl Therm Eng. 2015;90:1032–42.

    Google Scholar 

  20. Flageul C, Benhamadouche S, Lamballais É, Laurence D. DNS of turbulent channel flow with conjugate heat transfer: effect of thermal boundary conditions on the second moments and budgets. Int J Heat Fluid Flow. 2015;55:34–44.

    Google Scholar 

  21. Nimmagadd R, Venkatasubbaiah K. Conjugate heat transfer analysis of micro-channel using novel hybrid nanofluids (Al2O3 + Ag/Water). Eur J Mech-B/Fluids. 2015;52:19–27.

    Google Scholar 

  22. Mensch A, Thole KA. Conjugate heat transfer analysis of the effects of impingement channel height for a turbine blade endwall. Int J Heat Mass Transf. 2015;82:66–77.

    Google Scholar 

  23. Knupp DC, Cotta RM, Naveira-Cotta CP. Lattice Boltzmann method and its applications in engineering. Int J Heat Mass Transf. 2015;82:479–89.

    Google Scholar 

  24. Li HY, Yap YF, Lou J, Chai JC, Shang Z. Numerical investigation of conjugated heat transfer in a channel with a moving depositing front. Int J Therm Sci. 2015;88:136–47.

    Google Scholar 

  25. Scholl S, Verstraete T, Duchaine F, Gicquel L. Conjugate heat transfer of a rib-roughened internal turbine blade cooling channel using large eddy simulation. Int J Heat Fluid Flow. 2016;61:650–64.

    Google Scholar 

  26. Satish N, Venkatasubbaiah K. Conjugate heat transfer analysis of turbulent forced convection of moving plate in a channel flow. Appl Therm Eng. 2016;100:987–98.

    Google Scholar 

  27. Wu Zh, Laurence D, Iacovides H, Afgan I. Direct simulation of conjugate heat transfer of jet in channel crossflow. Int J Heat Mass Transf. 2017;110:193–208.

    Google Scholar 

  28. Sung JJ, Kim J. Conjugate heat transfer by oscillating flow in a parallel-plate channel subject to a sinusoidal wall temperature distribution. Appl Therm Eng. 2017;123:1462–72.

    Google Scholar 

  29. Gaikwad HS, Mondal PK, Wongwises S. Non-linear drag induced entropy generation analysis in a microporous channel: the effect of conjugate heat transfer. Int J Heat Mass Transf. 2017;108:2217–28.

    Google Scholar 

  30. Bahreini M, Ramiar A, Ranjbar AA. Numerical simulation of subcooled flow boiling under conjugate heat transfer and microgravity condition in a vertical mini channel. Appl Therm Eng. 2017;113:170–85.

    CAS  Google Scholar 

  31. Al-Asadi MT, Al-kasmoul FS, Wilson MCT. Benefits of spanwise gaps in cylindrical vortex generators for conjugate heat transfer enhancement in micro-channels. Appl Therm Eng. 2018;130:571–86.

    Google Scholar 

  32. Nouanegue H, Muftuoglu A, Bilgen E. Conjugate heat transfer by natural convection, conduction and radiation in open cavities. Int J Heat Mass Transf. 2008;51:6054–62.

    Google Scholar 

  33. Albanakis C, Bouris D. 3D conjugate heat transfer with thermal radiation in a hollow cube exposed to external flow. Int J Heat Mass Transf. 2008;51:6157–68.

    Google Scholar 

  34. Antar MA. Thermal radiation role in conjugate heat transfer across a multiple-cavity building block. Energy. 2010;35:3508–16.

    Google Scholar 

  35. Dogan M, Sivrioglu M, Yılmaz O. Numerical analysis of natural convection and radiation heat transfer from various shaped thin fin-arrays placed on a horizontal plate—a conjugate analysis. Energy Convers Manag. 2014;77:78–88.

    Google Scholar 

  36. Cintolesi C, Nilsson H, Petronio A, Armenio V. Numerical simulation of conjugate heat transfer and surface radiative heat transfer using the P1 thermal radiation model: parametric study in benchmark cases. Int J Heat Mass Transf. 2017;107:956–71.

    CAS  Google Scholar 

  37. Mezrhab A, Jami M, Abid C, Bouzidi M, Lallemand P. Lattice Boltzmann modeling of natural convection in an inclined square enclosure with partitions attached to its cold wall. Int J Heat Fluid Flow. 2006;27:456–65.

    Google Scholar 

  38. Steggel N. A numerical investigation of the flow around rectangular cylinders. Thesis for Doctor of Philosophy, School of Mechanical and Materials Engineering, The University of Surrey Guildford, UK. 1998.

  39. Chen X, Sun C, Xi X, Liu R, Wang F. Conjugated heat transfer analysis of a foam filled double-pipe heat exchanger for high-temperature application. Int J Heat Mass Transf. 2019;134:1003–13.

    Google Scholar 

  40. Favre F, Antepara O, Oliet C, Lehmkuhl O, Perez-Segarra CD. An immersed boundary method to conjugate heat transfer problems in complex geometries. Application to an automotive antenna. Appl Therm Eng. 2019;148:907–28.

    Google Scholar 

  41. Domari Ganji D, Peiravi MM, Abbasi M. Evaluation of the heat transfer rate increases in retention pools nuclear waste. Int J Nano Dimens. 2015;6:385–98.

    CAS  Google Scholar 

  42. Peiravi MM, Alinejad J, Domari Ganji D, Maddah S. Numerical study of fins arrangement and nanofluids effects on three-dimensional natural convection in the cubical enclosure. Transp Phenom Nano Micro Scales. 2019. https://doi.org/10.22111/tpnms.2019.27933.1164.

    Article  Google Scholar 

  43. Peiravi MM, Alinejad J, Domari Ganji D, Maddah S. 3D optimization of baffle arrangement in a multi-phase nanofluid natural convection based on numerical simulation. Int J Numer Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-01-2019-0012.

    Article  Google Scholar 

  44. Ross-Jones J, Gaedtke M, Sonnick S, Rädle M, Nirschl H, Krause MJ. Conjugate heat transfer through nano scale porous media to optimize vacuum insulation panels with lattice Boltzmann methods. Comput Math Appl. 2019;77:209–21.

    Google Scholar 

  45. Karakovskay KI, Vikulov ES, Ilyin IY, Piryazev DA, Sysoev SV, Morozov NB. Synthesis, structure and thermal investigation of a new volatile iridium(I) complex with cyclooctadiene and methoxy-substituted β-diketonate. J Therm Anal Calorim. 2019;137:931–40.

    Google Scholar 

  46. Gao M, Wan M, Zhou X. Thermal degradation and flame retardancy of flexible polyvinyl chloride containing solid superacid. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08219-3.

    Article  Google Scholar 

  47. Wu M, Nie Q, Li Y, Chen W, Yue X, Zhang Y. Multi-objective optimization of a new special-shaped tube for heating deicing fluid. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08302-9.

    Article  Google Scholar 

  48. Mehryan SAM, Izadpanahi E, Ghalambaz M, Chamkha AJ. Mixed convection flow caused by an oscillating cylinder in a square cavity filled with Cu–Al2O3/water hybrid nanofluid. J Therm Anal Calorim. 2019;137:965–82.

    CAS  Google Scholar 

  49. Zhang F, Yuan Z. The detection and evaluation for the internal defection in industrial pipeline based on the virtual heat source temperature field. J Therm Anal Calorim. 2019;137:949–64.

    CAS  Google Scholar 

  50. Purusothaman A, Murugesan K, Chamkha AJ. 3D modeling of natural convective heat transfer from a varying rectangular heat generating source. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08259-9.

    Article  Google Scholar 

  51. Amini Y, Akhavan S, Izadpanah E. A numerical investigation on the heat transfer characteristics of nanofluid flow in a three-dimensional microchannel with harmonic rotating vortex generators. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08402-6.

    Article  Google Scholar 

  52. Ferhi M, Djebali R, Abboudi S, Kharroubi H. Conjugate natural heat transfer scrutiny in differentially heated cavity partitioned with a conducting solid using the lattice Boltzmann method. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08276-8.

    Article  Google Scholar 

  53. Ma Y, Mohebbi R, Rashidi MM, Yang Z. MHD convective heat transfer of Ag-MgO/water hybrid nanofluid in a channel with active heaters and coolers. Int J Heat Mass Transf. 2019;137:714–26. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.169.

    Article  CAS  Google Scholar 

  54. Banda MK, Klar A, Seaid M. A lattice-Boltzmann relaxation scheme for coupled convection–radiation systems. J. Comput. Phys. 2007;226:1408–31. https://doi.org/10.1016/j.jcp.2007.05.030.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Alinejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peiravi, M.M., Alinejad, J. Hybrid conduction, convection and radiation heat transfer simulation in a channel with rectangular cylinder. J Therm Anal Calorim 140, 2733–2747 (2020). https://doi.org/10.1007/s10973-019-09010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09010-0

Keywords

Navigation