Skip to main content
Log in

Review on numerical simulations for nano-enhanced phase change material (NEPCM) phase change process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A review on numerical simulations performed for solidification and melting process of nano-enhanced phase change materials (NEPCM) is reported. The studies were conducted to understand the factors influencing the process such as nanoparticle fraction in the mixture, nanoparticle size and shape, boundary conditions imposed and container and fin geometry. Then, common nanoparticles applied in the studies were highlighted. The numerical models applied to simulate the problems were next presented. Finally, the thermophysical properties predicted and applied in the numerical works were compared. It was found that copper was the most applied nanoparticle in the numerical simulations. Most researchers applied enthalpy-porosity formulation coupled with finite volume method to perform the simulations. This method was preferred because it is relatively simpler compared to multidomain approach and mesoscale methods. Regardless of the chosen method, most researchers used a single thermophysical property value for the NEPCM in both solid and liquid regions. Brinkman and Maxwell correlations were mostly used to approximate the dynamic viscosity and thermal conductivity of the NEPCM, respectively. It is essential to understand the limitations and to select the most suitable thermophysical properties correlation to be applied in the numerical simulations to ensure that the final results will be acceptable and deviation from experimental works is effectively suppressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kean TH, Sidik NAC. Thermal performance analysis of nanoparticles enhanced phase change material (NEPCM) in cold thermal energy storage (CTES). CFD Lett. 2019;11:79–91.

    Google Scholar 

  2. Khudhair AM, Farid MM, editors. Use of phase change materials for thermal comfort and electrical energy peak load shifting: experimental investigations. In: Proceedings of ISES world congress 2007, vol I–V, Springer, Berlin; 2009.

  3. Mohamad AT, Sidik NAC, Beriache M. Thermo physical enhancement of advanced nano-composite phase change material. J Adv Res Appl Mech. 2019;54:1–8.

    Article  Google Scholar 

  4. Krishna J, Kishore PS, Solomon AB. Heat pipe with nano enhanced-PCM for electronic cooling application. Exp Therm Fluid Sci. 2017;81:84–92.

    Article  CAS  Google Scholar 

  5. Jamil N, Kaur J, Pandey AK, Shahabuddin S, Hassani S, Saidur R, Ali RR, Sidik NAC, Naim M. A review on nano enhanced phase change materials: an enhancement in thermal properties and specific heat capacity. J Adv Res Fluid Mech Therm Sci. 2019;57:110–20.

    Google Scholar 

  6. Mao Q, Chen H, Yang Y. Energy Storage performance of a PCM in the solar storage tank. J Therm Sci. 2019;28:195–203.

    Article  Google Scholar 

  7. Kean TH, Sidik NAC, Asako Y, Ken TL, Aid SR. Numerical study on heat transfer performance enhancement of phase change material by nanoparticles: a review. J Adv Res Fluid Mech Therm Sci. 2018;45:55–63.

    Google Scholar 

  8. Doshi Y. Thermal energy storage market by technology (sensible heat storage, latent heat storage, and thermochemical storage), type (water, molten salt, and phase change material), and end user (residential, commercial and industrial, and utility), Global Opportunity Analysis and Industry Forecast, 2017–2023, vol 180; (2017).

  9. Trelles JP, Dufly JJ. Numerical simulation of porous latent heat thermal energy storage for thermoelectric cooling. Appl Therm Eng. 2003;23:1647–64.

    Article  CAS  Google Scholar 

  10. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45:1597–615.

    Article  CAS  Google Scholar 

  11. Bruno F, Belusko M, Liu M, Tay NHS. 9: Using solid–liquid phase change materials (PCMs) in thermal energy storage systems. In: Cabeza LF, editor. Advances in thermal energy storage systems. Cambridge: Woodhead Publishing; 2015. p. 201–46.

    Chapter  Google Scholar 

  12. Choi SUS, editor. Enhancing thermal conductivity of fluids with nanoparticles. In: Proceedings of the 1995 ASME international mechanical engineering congress and exposition, New York, United States San Francisco, CA, USA: ASME; 1995.

  13. Mugilan T, Sidik NAC, Japar WMAA. The use of smart material of nanofluid for heat transfer enhancement in microtube with helically spiral rib and groove. J Adv Res Mater Sci. 2017;32:1–12.

    Google Scholar 

  14. Özerinç S, Kakaç S, YazIcIoǧlu AG. Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluid Nanofluid. 2010;8:145–70.

    Article  CAS  Google Scholar 

  15. Hong WX, Beriache MH, Che Sidik NA. Heat transfer performance of hybrid nanofluid as nanocoolant in automobile radiator system. J Adv Res Des. 2018;51:14–25.

    Google Scholar 

  16. Khodadadi JM, Hosseinizadeh SF. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int Commun Heat Mass Transf. 2007;34:534–43.

    Article  CAS  Google Scholar 

  17. Lamé G, Clapeyron BP. Memoire sur la solidification par refroidissement d’un globe liquide. Ann Chim Phys. 1831;47:250–6.

    Google Scholar 

  18. Stefan J. Uber einige probleme der theorie der warmeletung. S B Wien Akad Mat Natur. 1889;98(473–84):965–83.

    Google Scholar 

  19. Sparrow EM, Patankar SV, Ramadhyani S. Analysis of melting in the presence of natural convection in the melt region. J Heat Transf. 1977;99:520–6.

    Article  Google Scholar 

  20. Lamberg P, Lehtiniemi R, Henell AM. Numerical and experimental investigation of melting and freezing processes in phase change material storage. Int J Therm Sci. 2004;43:277–87.

    Article  Google Scholar 

  21. Voller V, Cross M. Accurate solutions of moving boundary problems using the enthalpy method. Int J Heat Mass Transf. 1981;24:545–56.

    Article  Google Scholar 

  22. Voller VR, Cross M, Markatos NC. An enthalpy method for convection/diffusion phase change. Int J Numer Meth Eng. 1987;24:271–84.

    Article  Google Scholar 

  23. Brent AD, Voller VR, Reid KJ. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf. 1988;13:297–318.

    Article  Google Scholar 

  24. Miller W. The lattice Boltzmann method: a new tool for numerical simulation of the interaction of growth kinetics and melt flow. J Cryst Growth. 2001;230:263–9.

    Article  CAS  Google Scholar 

  25. Sidik NAC, Kean TH, Chow HK, Rajaandra A, Rahman S, Kaur J. Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: a review. Int Commun Heat Mass Transf. 2018;94:85–95.

    Article  CAS  Google Scholar 

  26. Sebti SS, Khalilarya SH, Mirzaee I, Hosseinizadeh SF, Kashani S, Abdollahzadeh M. A numerical investigation of solidification in horizontal concentric annuli filled with nano-enhanced phase change material (NEPCM). World Appl Sci J. 2011;13:9–15.

    CAS  Google Scholar 

  27. Elbahjaoui R, El Qarnia H. Thermal analysis of nanoparticle-enhanced phase change material solidification in a rectangular latent heat storage unit including natural convection. Energy Build. 2017;153:1–17.

    Article  Google Scholar 

  28. Arasu AV, Sasmito AP, Mujumdar AS. Numerical performance study of paraffin wax dispersed with alumina in a concentric pipe latent heat storage system. Therm Sci. 2013;17:419–30.

    Article  Google Scholar 

  29. Kashani S, Ranjbar AA, Madani MM, Mastiani M, Jalaly H. Numerical study of solidification of a nano-enhanced phase change material (NEPCM) in a thermal storage system. J Appl Mech Tech Phys. 2013;54:702–12.

    Article  CAS  Google Scholar 

  30. Sharma RK, Ganesan P, Sahu JN, Metselaar HSC, Mahlia TMI. Numerical study for enhancement of solidification of phase change materials using trapezoidal cavity. Powder Technol. 2014;268:38–47.

    Article  CAS  Google Scholar 

  31. Li Z, Sheikholeslami M, Jafaryar M, Shafee A. Time-dependent heat transfer simulation for NEPCM solidification inside a channel. J Therm Anal Calorim. 2019;2019:1–6.

    Google Scholar 

  32. Fan LW, Zhang L, Yu ZT, Xu X, Hu YC, Cen KF, editors. A numerical investigation of constrained melting of nanostructure-enhanced phase change materials in a rectangular cavity heated from below. In: ASME 2012 heat transfer summer conference collocated with the ASME 2012 fluids engineering div summer meeting and the ASME 2012 10th international conference on nanochannels, microchannels and minichannels, HT 2012; Rio Grande; 2012.

  33. Sushobhan BR, Kar SP, editors. Thermal modeling of melting of nano based phase change material for improvement of thermal energy storage. In: Energy Procedia; 2017.

  34. Khodadadi JM, Hosseinizadeh SF. Melting of nanoprticle-enhanced phase change material inside shell and tube heat exchanger. Int Commun Heat Mass Transf. 2007;34:534–43.

    Article  CAS  Google Scholar 

  35. Sebti SS, Mastiani M, Mirzaei H, Dadvand A, Kashani S, Hosseini SA. Numerical study of the melting of nano-enhanced phase change material in a square cavity. J Zhejiang Univ Sci A. 2013;14:307–16.

    Article  CAS  Google Scholar 

  36. Bechiri M, Mansouri K, Hamlet N, Amirat S, editors. Numerical solution of NEPCM melting inside spherical enclosure. In: 3rd International conference on control, engineering and information technology, CEIT 2015; Institute of Electrical and Electronics Engineers Inc.; 2015.

  37. Parsazadeh M, Duan X. Numerical and statistical study on melting of nanoparticle enhanced phase change material in a shell-and-tube thermal energy storage system. Appl Therm Eng. 2017;111:950–60.

    Article  CAS  Google Scholar 

  38. Feng Y, Li H, Li L, Bu L, Wang T. Numerical investigation on the melting of nanoparticle-enhanced phase change materials (NEPCM) in a bottom-heated rectangular cavity using lattice Boltzmann method. Int J Heat Mass Transf. 2015;81:415–25.

    Article  Google Scholar 

  39. Darzi AR, Farhadi M, Jourabian M. Lattice boltzmann simulation of heat transfer enhancement during melting by using nanoparticles. Iran J Sci Technol Trans Mech Eng. 2013;37:23–37.

    Google Scholar 

  40. Jourabian M, Farhadi M, Sedighi K, Darzi AAR, Vazifeshenas Y. Melting of NEPCM within a cylindrical tube: numerical study using the lattice Boltzmann method. Numer Heat Transfer Part A Appl. 2012;61:929–48.

    CAS  Google Scholar 

  41. Jourabian M, Farhadi M. Melting of nanoparticles-enhanced phase change material (NEPCM) in vertical semicircle enclosure: numerical study. J Mech Sci Technol. 2015;29:3819–30.

    Article  Google Scholar 

  42. Sheikholeslami M, Zareei A, Jafaryar M, Shafee A, Li Z, Smida A, Tlili I. Heat transfer simulation during charging of nanoparticle enhanced PCM within a channel. Phys A. 2019;525:557–65.

    Article  CAS  Google Scholar 

  43. ElHasadi YMF, Khodadadi JM. Numerical simulation of the effect of the size of suspensions on the solidification process of nanoparticle-enhanced phase change materials. J Heat Transf. 2013;135:052901.

    Article  Google Scholar 

  44. Sheikholeslami M. Numerical simulation for solidification in a LHTESS by means of nano-enhanced PCM. J Taiwan Inst Chem Eng. 2018;86:25–41.

    Article  CAS  Google Scholar 

  45. Sheikholeslami M. Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin. J Mol Liq. 2018;259:424–38.

    Article  CAS  Google Scholar 

  46. Sheikholeslami M, Ghasemi A. Solidification heat transfer of nanofluid in existence of thermal radiation by means of FEM. Int J Heat Mass Transf. 2018;123:418–31.

    Article  CAS  Google Scholar 

  47. Sheikholeslami M, Haq RU, Shafee A, Li Z. Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins. Int J Heat Mass Transf. 2019;130:1322–42.

    Article  CAS  Google Scholar 

  48. Sheikholeslami M. Finite element method for PCM solidification in existence of CuO nanoparticles. J Mol Liq. 2018;265:347–55.

    Article  CAS  Google Scholar 

  49. Sheikholeslami M, Ghasemi A, Li Z, Shafee A, Saleem S. Influence of CuO nanoparticles on heat transfer behavior of PCM in solidification process considering radiative source term. Int J Heat Mass Transf. 2018;126:1252–64.

    Article  CAS  Google Scholar 

  50. Sheikholeslami M, Haq RU, Shafee A, Li Z, Elaraki YG, Tlili I. Heat transfer simulation of heat storage unit with nanoparticles and fins through a heat exchanger. Int J Heat Mass Transf. 2019;135:470–8.

    Article  CAS  Google Scholar 

  51. Mostafavinia N, Eghvay S, Hassanzadeh A. Numerical analysis of melting of nano-enhanced phase change material (NePCM) in a cavity with different positions of two heat source-sink pairs. Indian J Sci Technol. 2015;8:49–61.

    Article  CAS  Google Scholar 

  52. Ebrahimi A, Dadvand A. Simulation of melting of a nano-enhanced phase change material (NePCM) in a square cavity with two heat source–sink pairs. Alex Eng J. 2015;54:1003–17.

    Article  Google Scholar 

  53. Arici M, Tutuncu E, Campo A. Numerical investigation of melting of paraffin wax dispersed with CuO nanoparticles inside a square enclosure. Heat Transf Res. 2018;49:847–63.

    Article  Google Scholar 

  54. Kashani S, Ranjbar AA, Abdollahzadeh M, Sebti S. Solidification of nano-enhanced phase change material (NEPCM) in a wavy cavity. Heat Mass Transf. 2012;48:1155–66.

    Article  CAS  Google Scholar 

  55. Elbahjaoui R, El Qarnia H. Transient behavior analysis of the melting of nanoparticle-enhanced phase change material inside a rectangular latent heat storage unit. Appl Therm Eng. 2017;112:720–38.

    Article  CAS  Google Scholar 

  56. Pahamli Y, Hosseini MJ, Ranjbar AA, Bahrampoury R. Effect of nanoparticle dispersion and inclination angle on melting of PCM in a shell and tube heat exchanger. J Taiwan Inst Chem Eng. 2017;81:316–34.

    Article  CAS  Google Scholar 

  57. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure. Physica A. 2019;523:544–56.

    Article  Google Scholar 

  58. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Hydrothermal and second law behavior for charging of NEPCM in a two dimensional thermal storage unit. Chin J Phys. 2019;58:244–52.

    Article  CAS  Google Scholar 

  59. Baheta AT, Oumer AN, Hailegiorgis SM. Analysing the thermal performance of heat pipe using copper nanofluids. J Adv Res Fluid Mech Therm Sci. 2018;45:149–55.

    Google Scholar 

  60. Brinkman HC. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20:571.

    Article  CAS  Google Scholar 

  61. Maxwell JC. A treatise on electricity and magnetism. Clarendon press; 1881.

  62. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46:3639–53.

    Article  CAS  Google Scholar 

  63. Gau C, Viskanta R. Melting and solidification of a pure metal on a vertical wall. J Heat Transf. 1986;108:174–81.

    Article  CAS  Google Scholar 

  64. Kuehn TH, Goldstein RJ. An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. J Fluid Mech. 1976;74:695–719.

    Article  Google Scholar 

  65. Vajjha RS, Das DK, Namburu PK. Numerical study of fluid dynamic and heat transfer performance of Al2O3 and CuO nanofluids in the flat tubes of a radiator. Int J Heat Fluid Flow. 2010;31:613–21.

    Article  CAS  Google Scholar 

  66. Corcione M. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int J Therm Sci. 2010;49:1536–46.

    Article  CAS  Google Scholar 

  67. Duan Q, Tan FL, Leong KC. A numerical study of solidification of n-hexadecane based on the enthalpy formulation. J Mater Process Technol. 2002;120:249–58.

    Article  CAS  Google Scholar 

  68. Duggirala RK, Lin CX, Ghenai C. Investigation of double-diffusive convection during the solidification of a binary mixture (NH4ClH2O) in a trapezoidal cavity. Exp Fluids. 2006;40:918–27.

    Article  CAS  Google Scholar 

  69. Ismail KAR, Alves CLF, Modesto MS. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Appl Therm Eng. 2001;21:53–77.

    Article  CAS  Google Scholar 

  70. Hannoun N, Alexiades V, Mai TZ. A reference solution for phase change with convection. Int J Numer Meth Fluids. 2005;48:1283–308.

    Article  CAS  Google Scholar 

  71. Koo JK, Kleinstreuer C. A new thermal conductivity model for nanofluids. J Nanopart Res. 2004;6:577–88.

    Article  Google Scholar 

  72. Gharagozloo PE, Eaton JK, Goodson KE. Diffusion, aggregation, and the thermal conductivity of nanofluids. Appl Phys Lett. 2008;93:103110.

    Article  CAS  Google Scholar 

  73. Hosseinizadeh SF, Darzi AAR, Tan FL. Numerical investigations of unconstrained melting of nano-enhanced phase change material (NEPCM) inside a spherical container. Int J Therm Sci. 2012;51:77–83.

    Article  CAS  Google Scholar 

  74. Agyenim F, Eames P, Smyth M. A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins. Sol Energy. 2009;83:1509–20.

    Article  CAS  Google Scholar 

  75. Tan FL. Constrained and unconstrained melting inside a sphere. Int Commun Heat Mass Transf. 2008;35:466–75.

    Article  CAS  Google Scholar 

  76. Sciacovelli A, Colella F, Verda V. Melting of PCM in a thermal energy storage unit: numerical investigation and effect of nanoparticle enhancement. Int J Energy Res. 2013;37:1610–23.

    Article  CAS  Google Scholar 

  77. Aydin O, Akgün M, Kaygusuz K. An experimental optimization study on a tube-in-shell latent heat storage. Int J Energy Res. 2007;31:274–87.

    Article  CAS  Google Scholar 

  78. Lacroix M. Predictions of natural-convection-dominated phase-change problems by the vorticity-velocity formulation of the Navier–Stokes equations. Numer Heat Transf Part B Fundam. 1992;22:79–93.

    Article  CAS  Google Scholar 

  79. Gong ZX, Mujumdar AS. Flow and heat transfer in convection-dominated melting in a rectangular cavity heated from below. Int J Heat Mass Transf. 1998;41:2573–80.

    Article  CAS  Google Scholar 

  80. Patel HE, Sundararajan T, Pradeep T, Dasgupta A, Dasgupta N, Das SK. A micro-convection model for thermal conductivity of nanofluids. Pramana J Phys. 2005;65:863–9.

    Article  CAS  Google Scholar 

  81. deVahlDavis G. Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Methods Fluids. 1982;3:249–64.

    Article  Google Scholar 

  82. Huber C, Parmigiani A, Chopard B, Manga M, Bachmann O. Lattice Boltzmann model for melting with natural convection. Int J Heat Fluid Flow. 2008;29:1469–80.

    Article  CAS  Google Scholar 

  83. Tan FL, Hosseinizadeh SF, Khodadadi JM, Fan L. Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule. Int J Heat Mass Transf. 2009;52:3464–72.

    Article  CAS  Google Scholar 

  84. Arasu AV, Mujumdar AS. Numerical study on melting of paraffin wax with Al2O3 in a square enclosure. Int Commun Heat Mass Transf. 2012;39:8–16.

    Article  CAS  Google Scholar 

  85. Hosseini MJ, Ranjbar AA, Sedighi K, Rahimi M. A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger. Int Commun Heat Mass Transf. 2012;39:1416–24.

    Article  CAS  Google Scholar 

  86. Semma EA, El Ganaoui M, Bennacer R. Lattice Boltzmann method for melting/solidification problems. C R Mec. 2007;335:295–303.

    Article  CAS  Google Scholar 

  87. Vanaki SM, Ganesan P, Mohammed HA. Numerical study of convective heat transfer of nanofluids: a review. Renew Sustain Energy Rev. 2016;54:1212–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge Takasago Thermal and Environmental Systems (TTES) i-Kohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (Grand No. 4B314) for the assistance and encouragement to publish this review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. S. Nor Azwadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irwan, M.A.M., Azwadi, C.S.N., Asako, Y. et al. Review on numerical simulations for nano-enhanced phase change material (NEPCM) phase change process. J Therm Anal Calorim 141, 669–684 (2020). https://doi.org/10.1007/s10973-019-09038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09038-2

Keywords

Navigation