Skip to main content
Log in

Effects of nanoparticle shape and size on the thermohydraulic performance of plate evaporator using hybrid nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Brines (ethylene glycol, calcium chloride, propylene glycol and potassium acetate)-based hybrid (combinations of alumina, copper oxide, silica and titania with copper nanoparticles) nanofluids have been used as a secondary refrigerant to improve the heat transfer characteristics of the plate evaporator for milk chilling. Effect of nanoparticle combination, shape and size on heat transfer area, pump work, the ratio of heat transfer coefficient to pressure drop, coefficient of performance, performance index, thermal performance factor and exergetic efficiency has been examined theoretically. Copper oxide–copper hybrid nanofluid gives superior performance, while silica–copper hybrid nanofluid performs well in terms of exergetic efficiency. The maximum decrease in effective heat transfer area (5.9%) is found for propylene glycol brine-based copper oxide hybrid nanofluid. Percentage change in heat transfer area and performance index reduces with an increase in the particle size and is maximum for alumina–copper hybrid nanofluid. However, thermal performance factor increases with particle size. Brick-shaped particles show maximum changes in heat transfer area and performance index, while platelet-shaped particles show worse performance. The study reveals that the nanoparticle shape has a strong influence on the plate heat exchanger performance due to a significant deviation in surface area-to-volume ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Heat transfer area (m2)

b :

Mean channel spacing (mm)

c p :

Specific heat (J kg−1 K−1)

D :

Diameter (mm)

D h :

Hydraulic diameter (m)

E :

Exergy rate (W)

f :

Friction factor (dimensionless)

G :

Mass velocity (kg s−1 m−2)

h :

Specific enthalpy (J kg−1)

J :

Comparison factor (m s−1 K−1)

k :

Thermal conductivity (W m−1 K−1)

L :

Length (m)

:

Mass flow rate (kg s−1)

M :

Molecular weight

n :

Shape function (dimensionless)

N :

Avogadro number (mole−1)

N p :

Number of passes (dimensionless)

N t :

Number of plates (dimensionless)

Nu:

Nusselt number (dimensionless)

p :

Pressure (Pa)

Q :

Heat transfer rate (W)

r :

Radius (nm)

s :

Specific entropy (J K−1)

T :

Temperature (K)

t :

Plate thickness (mm)

U :

Overall heat transfer coefficient (W K−1 m−2)

W :

Work transfer rate (W)

Al2O3 :

Alumina

CaCl2 :

Calcium chloride

CuO:

Copper oxide

COP:

Coefficient of performance

EES:

Engineering equation solver

EG:

Ethylene glycol

HyNf:

Hybrid nanofluid

KAC:

Potassium acetate

LMTD:

Log mean temperature difference

MWCNT:

Multiwalled carbon nanotube

PHE:

Plate heat exchanger

PG:

Propylene glycol

PI:

Performance index

TiO2 :

Titania

TPF:

Thermal performance factor

v%:

Volume percentage

α :

Heat transfer coefficient (W K−1 m−2)

β :

Chevron angle (°)

ρ :

Density (kg m−3)

η :

Efficiency (dimensionless)

Ω:

Coefficient (dimensionless)

Φ:

Volume fraction (dimensionless)

µ :

Dynamic viscosity (Pa s)

II:

Second

a:

First particle

b:

Second particle

bf:

Basefluid

ch:

Channel

comp:

Compressor

e:

Ambient

eva:

Evaporator

i:

Inlet

nf:

Hybrid nanofluid

o:

Outlet

p:

Port

r:

Refrigerant

References

  1. Wang K, Eisele M, Hwang Y, Radermacher R. Review of secondary loop refrigeration systems. Int J Refrig. 2010;33:212–34.

    Article  CAS  Google Scholar 

  2. Hillerns F. Thermophysical properties and corrosion behavior of secondary coolants. Atlanta: ASHRAE Winter Meeting; 2001. p. 1–6.

    Google Scholar 

  3. Bhattad A, Sarkar J, Ghosh P. Improving the performance of refrigeration systems by using nanofluids: a comprehensive review. Renew Sustain Energy Rev. 2018;82:3656–69.

    Article  CAS  Google Scholar 

  4. Shadloo MS, Mahian O. Recent advances in heat and mass transfer. J Therm Anal Calorim. 2019;135:1611–5.

    Article  CAS  Google Scholar 

  5. Mahian O, Bajestan EE, Poncet S. Nanofluid today. J Therm Anal Calorim. 2019;135:23–8.

    Article  CAS  Google Scholar 

  6. Sarkar J, Ghosh P, Adil A. A review on hybrid nanofluids: recent research, development and applications. Renew Sustain Energy Rev. 2015;43:164–77.

    Article  CAS  Google Scholar 

  7. Babar H, Ali HM. Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges. J Mol Liq. 2019;281:598–633.

    Article  CAS  Google Scholar 

  8. Yang L, Ji W, Zhang Z, Jin X. Thermal conductivity enhancement of water by adding graphene nanosheets: consideration of particle loading and temperature effects. Int Commun Heat Mass transf. 2019;109:104353.

    Article  CAS  Google Scholar 

  9. Yang L, Mao M, Huang JN, Ji W. Enhancing the thermal conductivity of SAE 50 engine oil by adding zinc oxide nano-powder: an experimental study. Powder Technol. 2019;356:335–41.

    Article  CAS  Google Scholar 

  10. Moldoveanu GM, Huminic G, Minea AA, Huminic A. Experimental study on thermal conductivity of stabilized Al2O3 and SiO2 nanofluids and their hybrid. Int J Heat Mass Transf. 2018;127:450–7.

    Article  CAS  Google Scholar 

  11. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems: a review. J Therm Anal Calorim. 2018;131:2027–39.

    Article  CAS  Google Scholar 

  12. Rashidi S, Karimi N, Mahian O, Esfahani JA. A concise review on the role of nanoparticles upon the productivity of solar desalination systems. J Therm Anal Calorim. 2019;135:1145–59.

    Article  CAS  Google Scholar 

  13. Yang L, Huang JN, Ji W, Mao M. Investigations of a new combined application of nanofluids in heat recovery and air purification. Powder Technol. 2019. https://doi.org/10.1016/j.powtec.2019.10.053.

    Article  Google Scholar 

  14. Kumar V, Sarkar J. Numerical and experimental investigations on heat transfer and pressure drop characteristics of Al2O3–TiO2 hybrid nanofluid in minichannel heat sink with different mixture ratio. Powder Technol. 2019;345:717–27.

    Article  CAS  Google Scholar 

  15. Bhattad A, Sarkar J, Ghosh P. Experimentation on effect of particle ratio on hydrothermal performance of plate heat exchanger using hybrid nanofluid. Appl Therm Eng. 2019;162:114309.

    Article  CAS  Google Scholar 

  16. Singh SK, Sarkar J. Energy, exergy and economic assessments of shell and tube condenser using hybrid nanofluid as coolant. Int Commun Heat Mass Transf. 2018;98:41–8.

    Article  CAS  Google Scholar 

  17. Tiwari AK, Ghosh P, Sarkar J. Particle concentration levels of various nanofluids in plate heat exchanger for best performance. Int J Heat Mass Transf. 2015;89:1110–8.

    Article  CAS  Google Scholar 

  18. Huang D, Wu Z, Sunden B. Effects of hybrid nanofluid mixture in plate heat exchangers. Exp Therm Fluid Sci. 2016;72:190–6.

    Article  CAS  Google Scholar 

  19. Kumar V, Tiwari AK, Ghosh SK. Effect of variable spacing on performance of plate heat exchanger using nanofluids. Energy. 2016;114:1107–19.

    Article  CAS  Google Scholar 

  20. Bhattad A, Sarkar J, Ghosh P. Exergetic analysis of plate evaporator using hybrid nanofluids as secondary refrigerant for low-temperature applications. Int J Exergy. 2017;24–1:1–20.

    Article  Google Scholar 

  21. Kumar V, Tiwari AK, Ghosh SK. Exergy analysis of hybrid nanofluids with optimum concentration in a plate heat exchanger. Mater Res Express. 2018;5:065022.

    Article  CAS  Google Scholar 

  22. Bhattad A, Sarkar J, Ghosh P. Energy-economic analysis of plate evaporator using brine-based hybrid nanofluids as secondary refrigerant. Int J Air-Cond Refrig. 2018;26(1):1850003-12.

    Article  CAS  Google Scholar 

  23. Bhattad A, Sarkar J, Ghosh P. Energetic and exergetic performances of plate heat exchanger using brine based hybrid nanofluid for milk chilling application. Heat Transf. Eng. 2019; 1–14. https://doi.org/10.1080/01457632.2018.1546770.

  24. Li CH, Peterson GP. The effect of particle size on the effective thermal conductivity of Al2O3–water nanofluids. J Appl Phys. 2007;101:044312.

    Article  CAS  Google Scholar 

  25. Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106:014304.

    Article  CAS  Google Scholar 

  26. Jeong J, Li C, Kwon Y, Lee J, Kim SH, Yun R. Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig. 2013;36:2233–41.

    Article  CAS  Google Scholar 

  27. Nazarabada MK, Goharshadi EK, Youssefi A. Particle shape effects on some of the transport properties of tungsten oxide nanofluids. J Mol Liq. 2016;223:828–35.

    Article  CAS  Google Scholar 

  28. Nemati Z, Alonso J, Rodrigo I, Das R, Garaio E, García JÁ, Orue I, Phan M-H, Srikanth H. Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size. J Phys Chem C. 2018;122:2367–81.

    Article  CAS  Google Scholar 

  29. Shaiq S, Maraj EN, Iqbal Z. A comparative analysis of shape factor and thermophysical properties of electrically conducting nanofluids TiO2–EG and Cu–EG towards stretching cylinder. Chaos Soliton Fract. 2019;118:290–9.

    Article  Google Scholar 

  30. Yang L, Zhang Z, Du K. Heat transfer and flow optimization of a novel sinusoidal minitube filled with non-Newtonian SiC/EG–water nanofluids. Int J Mech Sci. 2019. https://doi.org/10.1016/j.ijmecsci.2019.105310.

    Article  Google Scholar 

  31. Yang L, Ji W, Huang JN, Xu G. An updated review on the influential parameters on thermal conductivity of nanofluids. J Mol Liq. 2019. https://doi.org/10.1016/j.molliq.2019.111780.

    Article  Google Scholar 

  32. Elias MM, Miqdad M, Mahbubul IM, Saidur R, Kamalisarvestani M, Sohel MR, Hepbasli A, Rahim NA, Amalina MA. Effect of nanoparticle shape on the heat transfer and thermodynamic performance of a shell and tube heat exchanger. Int Commun Heat Mass Transf. 2013;44:93–9.

    Article  CAS  Google Scholar 

  33. Mahian O, Kianifar A, Heris SZ, Wongwises S. First and second laws analysis of a minichannel-based solar collector using boehmite alumina nanofluids: effects of nanoparticle shape and tube materials. Int J Heat Mass Transf. 2014;78:1166–76.

    Article  CAS  Google Scholar 

  34. Arani AAA, Sadripour S, Kermani S. Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal–wavy mini-channel with phase shift and variable wavelength. Int J Mech Sci. 2017;128–129:550–63.

    Article  Google Scholar 

  35. Hajabdollahi H, Hajabdollahi Z. Numerical study on impact behavior of nanoparticle shapes on the performance improvement of shell and tube heat exchanger. Chem Eng Res Des. 2017;125:449–60.

    Article  CAS  Google Scholar 

  36. Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys. 2002;91:4568–72.

    Article  CAS  Google Scholar 

  37. Kim SH, Choi SR, Kim D. Thermal conductivity of metal-oxide nanofluids: particle size dependence and effect of laser irradiation. J Heat Transf. 2006;129:298–307.

    Article  CAS  Google Scholar 

  38. Nguyen CT, Desgranges F, Roy G, Galanis N, Maré T, Boucher S, Mintsa HA. Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon. Int J Heat Fluid Flow. 2007;28:1492–506.

    Article  CAS  Google Scholar 

  39. Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48:363–71.

    Article  CAS  Google Scholar 

  40. Monfared M, Shahsavar A, Bahrebar MR. Second law analysis of turbulent convection flow of boehmite alumina nanofluid inside a double-pipe heat exchanger considering various shapes for nanoparticle. J Therm Anal Calorim. 2019;135:1521–32.

    Article  CAS  Google Scholar 

  41. Klein SA. Engineering Equation Solver Professional. Version V10.042-3D, USA: F-Chart, 2016.

  42. Zarringhalam M, Karimipour A, Toghraie D. Experimental study of the effect of solid volume fraction and Reynolds number on heat transfer coefficient and pressure drop of CuO–water nanofluid. Exp Therm Fluid Sci. 2016;76:342–51.

    Article  CAS  Google Scholar 

  43. Huang D, Wu Z, Sunden B. Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger. Int J Heat Mass Transf. 2015;89:620–6.

    Article  CAS  Google Scholar 

  44. Kakac S, Liu H. Heat exchangers: selection, rating and thermal design. 2nd ed. Boca Raton: CRC Press LLC; 2002.

    Google Scholar 

  45. Chougule SS, Sahu SK. Model of heat conduction in hybrid nanofluid. ICECCN: IEEE: 2013.

  46. Corcione M. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int J Therm Sci. 2010;49–9:1536–46.

    Article  CAS  Google Scholar 

  47. Sahu M, Sarkar J. Steady-state energetic and exergetic performances of single-phase natural circulation loop with hybrid nanofluids. J Heat Transf. 2019;141:082401.

    Article  Google Scholar 

  48. Sheikholeslami M, Shamlooei M. Magnetic source influence on nanofluid flow in porous medium considering shape factor effect. Phys Lett A. 2017;381:3071–8.

    Article  CAS  Google Scholar 

  49. Elias MM, Shahrul IM, Mahbubul IM, Saidur R, Rahim NA. Effect of different nanoparticle shapes on shell and tube heat exchanger using different baffle angles and operated with nanofluid. Int J Heat Mass Transf. 2014;70:289–97.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jahar Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattad, A., Sarkar, J. Effects of nanoparticle shape and size on the thermohydraulic performance of plate evaporator using hybrid nanofluids. J Therm Anal Calorim 143, 767–779 (2021). https://doi.org/10.1007/s10973-019-09146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09146-z

Keywords

Navigation