Skip to main content
Log in

Analysis of Cattaneo–Christov theory for unsteady flow of Maxwell fluid over stretching cylinder

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Analysis of thermal and solutal energy transport phenomena in Maxwell fluid flow with the help of Cattaneo–Christov double diffusion theory is performed in this article. Unsteady 2D flow of Maxwell fluid with variable thermal conductivity over the stretching cylinder is considered here. We formulate the partial differential equations (PDEs) under given assumptions for the governing physical problem of heat and mass transport in Maxwell fluid by using double diffusion of Cattaneo–Christov model rather than classical Fourier’s and Fick’s law. Numerical technique bvp4c is employed for the solution of ordinary differential equations (ODEs) which are obtained from governing PDEs under the appropriate similarity transformations. In the view of acquired results, we observed that for convenient results the values of unsteadiness parameter should be less than one. The higher values of Maxwell parameter declines the flow field but increase the energy transport in the fluid flow. Both temperature and concentration distributions in Maxwell liquid decline for higher values of thermal and concentration relaxation time parameter. Moreover, small thermal conductivity parameter also enhances the temperature field. The validation of results is proved with the help of comparison Table 1 with previous articles. The present results are found with help of bvp4c scheme and homotopy analysis method (HAM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cattaneo C. Sulla conduzione del calore. Atti Semin Mat Fis Univ Modena Rerrio Emilia. 1948;3:83–101.

    Google Scholar 

  2. Christov CI. On a higher-gradient generalization of Fourier’s law of heat conduction. In AIP Conference Proceedings 2007 (Vol. 946, pp. 11–22).

  3. Yousif MA, Ismael HF, Abbas T, Ellahi R. Numerical study of momentum and heat transfer of MHD Carreau nanofluid over exponentially stretched plate with internal heat source/sink and radiation. Heat Transf Res. 2019;50(7):649–58.

    Article  Google Scholar 

  4. Sarafraz MM, Pourmehran O, Yang B, Arjomandi M, Ellahi R. Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field. Int J Therm Sci. 2020;147:106131.

    Article  CAS  Google Scholar 

  5. Han S, Zheng L, Li C, Zhang X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo–Christov heat flux model. Appl Math Lett. 2014;38:87–93.

    Article  Google Scholar 

  6. Upadhya SM, Mahesha, Raju CSK. Cattaneo -Christov heat flux model for magnetohydrodynamic flow in a suspension of dust particles towards a stretching sheet. Nonlinear Eng. 2018;7:237–46.

    Article  Google Scholar 

  7. Khan WA, Irfan M, Khan M. An improved heat conduction and mass diffusion models for rotating flow of an Oldroyd-B fluid. Results Phys. 2017;7:3583–9.

    Article  Google Scholar 

  8. Ibrahim W. Three dimensional rotating flow of Powell-Eyring nanofluid with non-Fourier’s heat flux and non-Fick’s mass flux theory. Results Phys. 2018;8:569–77.

    Article  Google Scholar 

  9. Farooq M, Ahmad S, Javed M, Anjum A. Analysis of Cattaneo–Christov heat and mass fluxes in the squeezed flow embedded in porous medium with variable mass diffusivity. Results Phys. 2017;7:3788–96.

    Article  Google Scholar 

  10. Alamri SZ, Khan AA, Azeez M, Ellahi R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phys Lett A. 2019;383:276–81.

    Article  CAS  Google Scholar 

  11. Ahmed J, Khan M, Ahmad L. Effectiveness of homogeneous-heterogeneous reactions in Maxwell fluid flow between two spiraling disks with improved heat conduction features. J Therm Anal Calorim. 2019;. https://doi.org/10.1007/s10973-019-08712-9.

    Article  Google Scholar 

  12. Saleem S, Awais M, Nadeem S, Sandeep N, Mustafa MT. Theoretical analysis of upper-convected Maxwell fluid flow with Cattaneo–Christov heat flux model. Chin J Phys. 2017;55:1615–25.

    Article  Google Scholar 

  13. Reddy GK, Yarrakula K, Raju CSK. Mixed convection analysis of variable heat source/sink on MHD Maxwell, Jeffrey, and Oldroyd-B nanofluids over a cone with convective conditions using Buongiorno’s model. J Therm Anal Calorim. 2018;. https://doi.org/10.1007/s10973-018-7115-0.

    Article  Google Scholar 

  14. Ellahi R, Zeeshan A, Shehzad N, Alamri SZ. Structural impact of kerosene-\(\text{ Al }_2\text{ O }_3\) nanoliquid on MHD Poiseuille flow with variable thermal conductivity: application of cooling process. J Mol Liq. 2018;264:607–15.

    Article  CAS  Google Scholar 

  15. Tibullo V, Zampoli V. A uniqueness result for the Cattaneo–Christov heat conduction model applied to incompressible fluids. Mech Res Commun. 2011;38:77–9.

    Article  Google Scholar 

  16. Bhattacharyya A, Seth GS, Kumar R. Simulation of Cattaneo–Christov heat flux on the flow of single and multi-walled carbon nanotubes between two stretchable coaxial rotating disks. J Therm Anal Calorim. 2019;. https://doi.org/10.1007/s10973-019-08644-4.

    Article  Google Scholar 

  17. Ramadevi B, Kumar KA, Sugunamma V. Magnetohydrodynamic mixed convective flow of micropolar fluid past a stretching surface using modified Fourier’s heat flux model. J Therm Anal Calorim. 2019;. https://doi.org/10.1007/s10973-019-08477-1.

    Article  Google Scholar 

  18. Kumar KA, Sugunamma V, Sandeep N. Influence of viscous dissipation on MHD flow of micropolar fluid over a slendering stretching surface with modified heat flux model. J Therm Anal Calorim. 2019;. https://doi.org/10.1007/s10973-019-08694-8.

    Article  Google Scholar 

  19. Asadollahi A, Esfahani JA, Ellahi R. Evacuating liquid coatings from a diffusive oblique fin in micro-/mini-channels. J Therm Anal Calorim. 2019;138:255–63.

    Article  CAS  Google Scholar 

  20. Rashidi S, Eskandarian M, Mahian O, Poncet S. Combination of nanofluid and inserts for heat transfer enhancement. J Therm Anal Calorim. 2019;135(1):437–60.

    Article  CAS  Google Scholar 

  21. Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2019;. https://doi.org/10.1007/s10973-019-08348-9.

    Article  Google Scholar 

  22. Raju CSK, Sandeep N, Malvandib A. Free convective heat and mass transfer of MHD non-Newtonian nanofluids over a cone in the presence of non-uniform heat source/sink. J Mol Liq. 2016;221:108–15.

    Article  CAS  Google Scholar 

  23. Hsiao KL. Combined electrical MHD heat transfer thermal extrusion system using Maxwell fluid with radiative and viscous dissipation effects. Appl Therm Eng. 2017;112:1281–8.

    Article  CAS  Google Scholar 

  24. Hsiao KL. To promote radiation electrical MHD activation energy thermal extrusion manufacturing system efficiency by using Carreau–Nanofluid with parameters control method. Energy. 2017;130:486–99.

    Article  Google Scholar 

  25. Ahmed J, Khan M, Ahmad L. Stagnation point flow of Maxwell nanofluid over a permeable rotating disk with heat source/sink. J Mol Liq. 2019;287:110853.

    Article  CAS  Google Scholar 

  26. Moshkin NP, Pukhnachev VV, Bozhkov YD. On the unsteady, stagnation point flow of a Maxwell fluid in 2D. Int J Non-Linear Mech. 2019;116:32–8.

    Article  Google Scholar 

  27. Hsiao KL. Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl Therm Eng. 2016;98:850–61.

    Article  CAS  Google Scholar 

  28. Hsiao KL. Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature. Int J Heat Mass Transf. 2017;112:983–90.

    Article  Google Scholar 

  29. Saif RS, Hayat T, Ellahi R, Muhammad T, Alsaedi T. Darcy–Forchheimer flow of nanofluid due to a curved stretching surface. Int J Numer Method Heat Fluid Flow. 2019;29(1):2–20.

    Article  Google Scholar 

  30. Ahmed Z, Nadeem S, Saleem S, Ellahi R. Numerical study of unsteady flow and heat transfer CNT-based MHD nanofluid with variable viscosity over a permeable shrinking surface. Int J Numer Methods Heat Fluid Flow. 2019;29(12):4607–23.

    Article  Google Scholar 

  31. Rajagopal KR. A note on novel generalizations of the Maxwell fluid model. Int J Non-Linear Mech. 2012;47(1):72–6.

    Article  Google Scholar 

  32. Abel MS, Tawade JV, Nandeppanavar MM. MHD flow and heat transfer for the upper-convected Maxwell fluid over a stretching sheet. Meccanica. 2012;47:385–93.

    Article  Google Scholar 

  33. Waqas M, Khan MI, Hayat T, Alsaedi A. Stratified flow of an Oldroyd-B nanoliquid with heat generation. Results Phys. 2017;7:2489–96.

    Article  Google Scholar 

  34. Irfan M, Khan M, Khan WA. Impact of homogeneous-heterogeneous reactions and non-Fourier heat flux theory in Oldroyd-B fluid with variable conductivity. J Braz Soc Mech Sci Eng. 2019;. https://doi.org/10.1007/s40430-019-1619-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawad Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M., Ahmed, A., Irfan, M. et al. Analysis of Cattaneo–Christov theory for unsteady flow of Maxwell fluid over stretching cylinder. J Therm Anal Calorim 144, 145–154 (2021). https://doi.org/10.1007/s10973-020-09343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09343-1

Keywords

Navigation