Skip to main content
Log in

Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, flow of a mixture of water and ethylene glycol (50–50%) with hybrid nanoparticles (MWCNT–Ag) over a vertical stretching cylinder has been investigated. In this research, the fluid passes through a porous media, while a magnetic field has been applied to the system. Furthermore, the effects of thermal radiation, viscous dissipation, and natural convection have been studied. As a novelty, the effects of different shape factors have been investigated. In the first step, the governing equations are extracted from partial differential equations and then converted to ordinary differential equations (ODE) using the similarity solution. In the next step, the fifth-order Runge–Kutta method has been used to solve the related ODEs. The effects of parameters such as magnetic field, radiation parameter, porosity parameter, nanofluid volume fraction, and nanofluid shape factor on dimensionless velocity and temperature profile have been presented for single and hybrid nanofluid. The results showed that at \(\eta\) = 2.5 for hybrid nanoparticles the shape factors lamina and spherical have the largest difference; lamina is smaller by 6%, also the results demonstrated that at \(\eta\) = 2 with increasing Ha, the radial velocity reduced 9.68% for hybrid nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

\(u,\,v\) :

Velocity components

\(c_{\text{p}}\) :

Specific heat

\(U_{\text{w}}\) :

Stretching velocity

\(\nu_{\text{nf}}\) :

Kinematic viscosity

\(\sigma^{*}\) :

Stefan–Boltzmann constant

\((\rho c_{\text{p}} )_{\text{nf}}\) :

Heat capacity of nanoliquid

\(q_{\text{w}}\) :

Heat flux

\(\phi\) :

Volume fraction of nanoparticles

\(\beta^{*}\) :

Thermal expansion coefficient

\(\text{Re}_{\text{x}}\) :

Reynolds number

Nr:

Radiation parameter

\(\theta_{\text{w}}\) :

Temperature ratio variable

Nux :

Nusselt number

\(\tau_{\text{w}}\) :

Shear stress

\(\omega\) :

Porosity parameter

\({\text{Cf}}_{\text{x}}\) :

Skin friction coefficient

Ha:

Hartmann number

\(q_{\text{r}}\) :

Radiative flux

\(\kappa\) :

Specific or intrinsic permeability

\(\beta\) :

Slip parameter

\(k\) :

Thermal conductivity

Ec:

Eckert number

\(k^{*}\) :

Mean absorption coefficient

T m :

Melting temperature

\(T_{\infty }\) :

Ambient temperature

\(K\) :

Specific permeability

\(\mu_{\text{nf}}\) :

Nanofluid dynamic viscosity

\(\rho_{\text{nf}}\) :

Nanofluid density

\(k_{\text{nf}}\) :

Thermal conductivity of nanoliquid

\(l\) :

Characteristics length

\(U_{\text{e}}\) :

Free-stream velocity

\(\gamma\) :

Curvature parameter

Pr:

Prandtl number

\(M\) :

Magnetic parameter

f:

Fluid

s:

Nanoparticle

nf:

Nanofluid

hnf:

Hybrid nanofluid

References

  1. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL, United States; 1995.

  2. Khanafer K, Vafai K. A critical synthesis of thermophysical characteristics of nanofluids. Int J Heat Mass Transf. 2011;54(19–20):4410–28.

    Article  CAS  Google Scholar 

  3. Li Q, Xuan Y, Wang J. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf. 2003;125(2):151–5.

    Article  Google Scholar 

  4. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf A. 2011;388(1–3):41–8.

    Article  CAS  Google Scholar 

  5. Takabi B, Salehi S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Adv Mech Eng. 2014;6:147059.

    Article  Google Scholar 

  6. Mohebbi R, Rashidi MM. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J Taiwan Inst Chem Eng. 2017;72:70–84.

    Article  CAS  Google Scholar 

  7. Garoosi F, Jahanshaloo L, Rashidi MM, Badakhsh A, Ali ME. Numerical simulation of natural convection of the nanofluid in heat exchangers using a Buongiorno model. Appl Math Comput. 2015;254:183–203.

    Google Scholar 

  8. Jana S, Salehi-Khojin A, Zhong WH. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta. 2007;462(1–2):45–55.

    Article  CAS  Google Scholar 

  9. Shehzad SA, Hayat T, Alsaedi A, Obid MA. Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: a model for solar energy. Appl Math Comput. 2014;248:273–86.

    Google Scholar 

  10. Botha SS, Ndungu P, Bladergroen BJ. Physicochemical properties of oil-based nanofluids containing hybrid structures of silver nanoparticles supported on silica. Ind Eng Chem Res. 2011;50(6):3071–7.

    Article  CAS  Google Scholar 

  11. Ghadikolaei SS, Yassari M, Sadeghi H, Hosseinzadeh K, Ganji DD. Investigation on thermophysical properties of TiO2–Cu/H2O hybrid nanofluid transport dependent on shape factor in MHD stagnation point flow. Powder Technol. 2017;322:428–38.

    Article  CAS  Google Scholar 

  12. Ghalambaz M, Doostani A, Chamkha AJ, Ismael MA. Melting of nanoparticles-enhanced phase-change materials in an enclosure: effect of hybrid nanoparticles. Int J Mech Sci. 2017;134:85–97.

    Article  Google Scholar 

  13. Wei B, Zou C, Yuan X, Li X. Thermo-physical property evaluation of diathermic oil based hybrid nanofluids for heat transfer applications. Int J Heat Mass Transf. 2017;107:281–7.

    Article  CAS  Google Scholar 

  14. Devi SSU, Devi SA. Numerical investigation of three-dimensional hybrid Cu–Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Can J Phys. 2016;94(5):490–6.

    Article  CAS  Google Scholar 

  15. Ghasemi SE, Hatami M, Jing D, Ganji DD. Nanoparticles effects on MHD fluid flow over a stretching sheet with solar radiation: a numerical study. J Mol Liq. 2016;219:890–6.

    Article  CAS  Google Scholar 

  16. Siyal A, Abro KA, Solangi MA. Thermodynamics of magnetohydrodynamic Brinkman fluid in porous medium. J Therm Anal Calorim. 2019;136(6):2295–304.

    Article  CAS  Google Scholar 

  17. Kalidasan K, Velkennedy R, Kanna PR. Laminar natural convection of Copper-Titania/Water hybrid nanofluid in an open ended C-shaped enclosure with an isothermal block. J Mol Liq. 2017;246:251–8.

    Article  CAS  Google Scholar 

  18. Hosseinzadeh K, Asadi A, Mogharrebi AR, Khalesi J, Mousavisani S, Ganji DD. Entropy generation analysis of (CH2OH)2 containing CNTs nanofluid flow under effect of MHD and thermal radiation. Case Stud Therm Eng. 2019;14:100482.

    Article  Google Scholar 

  19. Abro KA, Hussain M, Baig MM. An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana–Baleanu fractional derivatives. Eur Phys J Plus. 2017;132(10):439.

    Article  Google Scholar 

  20. Abro KA, Chandio AD, Abro IA, Khan I. Dual thermal analysis of magnetohydrodynamic flow of nanofluids via modern approaches of Caputo–Fabrizio and Atangana–Baleanu fractional derivatives embedded in porous medium. J Therm Anal Calorim. 2019;135(4):2197–207.

    Article  CAS  Google Scholar 

  21. Zangooee MR, Hosseinzadeh K, Ganji DD. Hydrothermal analysis of MHD nanofluid (TiO2–GO) flow between two radiative stretchable rotating disks using AGM. Case Stud Therm Eng. 2019;14:100460.

    Article  Google Scholar 

  22. Shojaei A, Amiri AJ, Ardahaie SS, Hosseinzadeh K, Ganji DD. Hydrothermal analysis of Non-Newtonian second grade fluid flow on radiative stretching cylinder with Soret and Dufour effects. Case Stud Therm Eng. 2019;13:100384.

    Article  Google Scholar 

  23. Abro KA, Memon AA, Abro SH, Khan I, Tlili I. Enhancement of heat transfer rate of solar energy via rotating Jeffrey nanofluids using Caputo–Fabrizio fractional operator: an application to solar energy. Energy Rep. 2019;5:41–9.

    Article  Google Scholar 

  24. Hosseinzadeh K, Gholinia M, Jafari B, Ghanbarpour A, Olfian H, Ganji DD. Nonlinear thermal radiation and chemical reaction effects on Maxwell fluid flow with convectively heated plate in a porous medium. Heat Transf Asian Res. 2019;48(2):744–59.

    Article  Google Scholar 

  25. Gholinia M, Hosseinzadeh K, Mehrzadi H, Ganji DD, Ranjbar AA. Investigation of MHD Eyring–Powell fluid flow over a rotating disk under effect of homogeneous–heterogeneous reactions. Case Stud Therm Eng. 2019;13:100356.

    Article  Google Scholar 

  26. Ghadikolaei SS, Hosseinzadeh K, Ganji DD. Investigation on magneto Eyring–Powell nanofluid flow over inclined stretching cylinder with nonlinear thermal radiation and Joule heating effect. World J Eng. 2019;16(1):51–63.

    Article  CAS  Google Scholar 

  27. Ghadikolaei SS, Hosseinzadeh K, Ganji DD. Investigation on ethylene glycol-water mixture fluid suspend by hybrid nanoparticles (TiO2–CuO) over rotating cone with considering nanoparticles shape factor. J Mol Liq. 2018;272:226–36.

    Article  CAS  Google Scholar 

  28. Ghadikolaei SS, Hosseinzadeh K, Ganji DD. MHD radiative boundary layer analysis of micropolar dusty fluid with graphene oxide (Go)-engine oil nanoparticles in a porous medium over a stretching sheet with joule heating effect. Powder Technol. 2018;338:425–37.

    Article  CAS  Google Scholar 

  29. Hosseinzadeh K, Afsharpanah F, Zamani S, Gholinia M, Ganji DD. A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption. Case Stud Therm Eng. 2018;12:228–36.

    Article  Google Scholar 

  30. Hosseinzadeh K, Mogharrebi AR, Asadi A, Sheikhshahrokhdehkordi M, Mousavisani S, Ganji DD. Entropy generation analysis of mixture nanofluid (H2O/C2H6O2)–Fe3O4 flow between two stretching rotating disks under the effect of MHD and nonlinear thermal radiation. Int J Ambient Energy. 2019;1–13.

  31. Ghadikolaei SS, Hosseinzadeh K, Hatami M, Ganji DD, Armin M. Investigation for squeezing flow of ethylene glycol (C2H6O2) carbon nanotubes (CNTs) in rotating stretching channel with nonlinear thermal radiation. J Mol Liq. 2018;263:10–21.

    Article  CAS  Google Scholar 

  32. Ghadikolaei SS, Hosseinzadeh K, Hatami M, Ganji DD. MHD boundary layer analysis for micropolar dusty fluid containing Hybrid nanoparticles (Cu–Al2O3) over a porous medium. J Mol Liq. 2018;268:813–23.

    Article  CAS  Google Scholar 

  33. Yildirim A, Abro KA. Heat transfer on fractionalized micropolar nanofluid over oscillating plate via Caputo–Fabrizio fractional operator. Sci Iran Int J Sci Technol. 2019;26(6):3917–27.

    Google Scholar 

  34. Timofeeva EV, Routbort JL, Singh D. Particle shape effects on thermophysical properties of alumina nanofluids. J Appl Phys. 2009;106(1):014304.

    Article  Google Scholar 

  35. Hayat T, Ullah S, Khan MI, Alsaedi A. On framing potential features of SWCNTs and MWCNTs in mixed convective flow. Results Phys. 2018;8:357–64.

    Article  Google Scholar 

  36. Ghadikolaei SS, Hosseinzadeh K, Ganji DD. Investigation on three dimensional squeezing flow of mixture base fluid (ethylene glycol-water) suspended by hybrid nanoparticle (Fe3O4–Ag) dependent on shape factor. J Mol Liq. 2018;262:376–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Ganji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinzadeh, K., Asadi, A., Mogharrebi, A.R. et al. Investigation of mixture fluid suspended by hybrid nanoparticles over vertical cylinder by considering shape factor effect. J Therm Anal Calorim 143, 1081–1095 (2021). https://doi.org/10.1007/s10973-020-09347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09347-x

Keywords

Navigation